【題目】如圖,在ABCD中,E、F分別為邊AD、BC的中點,對角線AC分別交BE,DF于點G、H.求證:AG=CH.
【答案】證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠ADF=∠CFH,∠EAG=∠FCH,
∵E、F分別為AD、BC邊的中點,
∴AE=DE= AD,CF=BF= BC,
∴DE∥BF,DE=BF,
∴四邊形BFDE是平行四邊形,
∴BE∥DF,
∴∠AEG=∠ADF,
∴∠AEG=∠CFH,
在△AEG和△CFH中, ,
∴△AEG≌△CFH(ASA),
∴AG=CH.
【解析】本題考查了平行四邊形的性質和判定,全等三角形的判定與性質;熟練掌握平行四邊形的判定與性質,證明三角形全等是解決問題的關鍵.根據平行四邊形的性質得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,證出四邊形BFDE是平行四邊形,得出BE∥DF,證出∠AEG=∠CFH,由ASA證明△AEG≌△CFH,得出對應邊相等即可.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=4,求圖中陰影部分的面積(結果保留根號和π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一個直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點,連接EF.
(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=3S△EDF , 求AE的長;
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點A落在BC邊上的點M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結論;
②求EF的長;
(3)如圖③,若FE的延長線與BC的延長線交于點N,CN=1,CE= ,求 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現要剪下一張等腰三角形紙片(△AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人利用撲克牌玩“10點”游戲,游戲規(guī)則如下:
①將牌面數字作為“點數”,如紅桃6的“點數”就是6(牌面點數與牌的花色無關);
②兩人摸牌結束時,將所摸牌的“點數”相加,若“點數”之和小于或等于10,此時“點數”之和就是“最終點數”;若“點數”之和大于10,則“最終點數”是0;
③游戲結束前雙方均不知道對方“點數”;
④判定游戲結果的依據是:“最終點數”大的一方獲勝,“最終點數”相等時不分勝負.
現甲、乙均各自摸了兩張牌,數字之和都是5,這時桌上還有四張背面朝上的撲克牌,牌面數字分別是4,5,6,7.
(1)若甲從桌上繼續(xù)摸一張撲克牌,乙不再摸牌,則甲獲勝的概率為;
(2)若甲先從桌上繼續(xù)摸一張撲克牌,接著乙從剩下的撲克牌中摸出一張牌,然后雙方不再摸牌.請用樹狀圖或表格表示出這次摸牌后所有可能的結果,再列表呈現甲、乙的“最終點數”,并求乙獲勝的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】東坡商貿公司購進某種水果的成本為20元/kg,經過市場調研發(fā)現,這種水果在未來48天的銷售單價p(元/kg)與時間t(天)之間的函數關系式為p= 且其日銷售量y(kg)與時間t(天)的關系如表:
時間t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
日銷售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(1)已知y與t之間的變化規(guī)律符合一次函數關系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤最大?最大日銷售利潤為多少?
(3)在實際銷售的前24天中,公司決定每銷售1kg水果就捐贈n元利潤(n<9)給“精準扶貧”對象.現發(fā)現:在前24天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
(1)計算:( )﹣1+(π﹣3.14)0﹣2sin60°﹣ +|1﹣3 |;
(2)先化簡,再求值:
(a+1﹣ )÷( ),其中a=2+ .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com