如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,則AB=_____  ,sinA=____
5,

分析:先利用勾股定理計(jì)算出AB,然后根據(jù)正弦的定義即可得到∠A的正弦.
解:∵∠C=90°,AC=3,BC=4,
∴AB===5,
∴sinA==
故答案為:5,
點(diǎn)評(píng):本題考查了正弦的定義:在直角三角形中,一個(gè)銳角的正弦等于這個(gè)角的對(duì)邊與斜邊的比值.也考查了勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:計(jì)算題

(2011福建龍巖,25, 14分)如圖,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°, AB=6,AD=9,
點(diǎn)E是CD上的一個(gè)動(dòng)點(diǎn)(E不與D重合),過點(diǎn)E作EF∥AC,交AD于點(diǎn)F(當(dāng)E運(yùn)
動(dòng)到C時(shí),EF與AC重合巫臺(tái)).把△DEF沿EF對(duì)折,點(diǎn)D的對(duì)應(yīng)點(diǎn)是點(diǎn)G,設(shè)DE=x,
△GEF與梯形ABCD重疊部分的面積為y。
(1) 求CD的長(zhǎng)及∠1的度數(shù);
(2) 若點(diǎn)G恰好在BC上,求此時(shí)x的值;
(3) 求y與x之間的函數(shù)關(guān)系式。并求x為何值時(shí),y的值最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

.(6分)一種拉桿式旅行箱的示意圖如圖所示,箱體長(zhǎng)AB=50cm,拉桿最大伸長(zhǎng)距離BC=35cm(點(diǎn)A、B、C在同一直線上),點(diǎn)A到地面的距離AD=8cm,旅行箱與水平面AE成50°角,求拉桿伸長(zhǎng)到最大時(shí),把手處C到地面的距離(精確到1cm).(參考數(shù)據(jù):sin50°= 0.77,cos50°= 0.64,tan50°= 1.19.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖3,一天晚上,小穎由路燈A下的B處走到C處時(shí),測(cè)得影子CD的長(zhǎng)為1米,當(dāng)她繼續(xù)往前走到D處時(shí),測(cè)得此時(shí)影子DE的一端E到路燈A的仰角為45º,已知小穎的身高為1.5米,那么路燈A的高度AB為
A.3米B.4.5米C.6米D.8米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•攀枝花)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD=AD,∠B=60°,DE⊥AC于點(diǎn)E,已知該梯形的高為
(1)求證:∠ACD=30°;
(2)DE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011年青海,24,7分)某學(xué)校九年級(jí)的學(xué)生去旅游,在風(fēng)景區(qū)看到一棵古松,不知這棵古松有多高,下面是他們的一段對(duì)話:
甲:我站在此處看樹頂仰角為45°。
乙:我站在此處看樹頂仰角為30°。
甲:我們的身高都是1.5m。
乙:我們相距20m。
請(qǐng)你根據(jù)兩位同學(xué)的對(duì)話,參考圖7計(jì)算這棵古松的高度。(參考數(shù)據(jù)≈1.414,≈1.732,結(jié)果保留兩位小數(shù))。
圖7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

tan30°的值等于 
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,小明家在A處,門前有一口池塘,隔著池塘有一條公路l,ABAl的小路. 現(xiàn)新修一條路AC到公路l. 小明測(cè)量出∠ACD=30º,∠ABD=45º,BC=50m. 請(qǐng)你幫小明計(jì)算他家到公路l的距離AD的長(zhǎng)度(精確到0.1m;參考數(shù)據(jù):,).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題7分) 化簡(jiǎn)求值:x=2sin45°-1

查看答案和解析>>

同步練習(xí)冊(cè)答案