精英家教網 > 初中數學 > 題目詳情

如圖所示,圖1是一個長為2m,寬為2n的長方形(m>n),沿圖中的虛線剪成四個全等的小長方形,再按圖2圍成一個較大的正方形.
(1)請用兩種方法表示圖中陰影部分的面積(只需表示,不必化簡).
(2)比較(1)中的兩種結果,你能得到怎樣的等量關系?
(3)請用(2)中得到的等量關系解決下面的問題:如果mn=12,m+n=8,求m-n的值.

解:(1)第一種表示方法:(m-n)2;第二種表示方法:(m+n)2-4mn.

(2)大正方形的面積為:(m+n)2,陰影部分的正方形的面積(m-n)2,四塊小長方形的面積為4mn,
∴可得:(m-n)2=(m+n)2-4mn

(3)由(2)很快可求出(m-n)2=(m+n)2-4mn=82-4×12=16,
∴可得:m-n=4.
分析:1、①觀察圖形很容易得出圖b中的陰影部分的正方形的邊長等于m-n;②運用大正方形的面積減去四個矩形的面積;
2、觀察圖形可知大正方形的面積(m+n)2,減去陰影部分的正方形的面積(m-n)2等于四塊小長方形的面積4mn,即(m+n)2=(m-n)2+4mn;
3、由2很快可求出(m-n)2=(m+n)2-4mn=82-4×12=16.
點評:本題考查了完全平方公式的實際應用,完全平方公式與正方形的面積公式和長方形的面積公式經常聯系在一起.要學會觀察.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

24、如圖所示,圖1是一個長為2m,寬為2n的長方形,沿圖中的虛線剪成四個全等的小長方形,再按圖2圍成一個較大的正方形.

(1)請用兩種方法表示圖2中陰影部分的面積(只需表示,不必化簡);
(2)比較(1)的兩種結果,你能得到怎樣的等量關系?
(3)請你用(2)中得到的等量關系解決下面問題:如果m-n=4,mn=12,求m+n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

28、如圖所示,圖1是一個長為2m,寬為2n的長方形(m>n),沿圖中的虛線剪成四個全等的小長方形,再按圖2圍成一個較大的正方形.
(1)請用兩種方法表示圖中陰影部分的面積(只需表示,不必化簡).
(2)比較(1)中的兩種結果,你能得到怎樣的等量關系?
(3)請用(2)中得到的等量關系解決下面的問題:如果mn=12,m+n=8,求m-n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

18、如圖所示,圖中是一個立體圖形的三視圖,請你根據視圖,說出立體圖形的名稱:

對應的立體圖形是
正四棱錐
的三視圖.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,圖1是一個長為2m,寬為2n的長方形,沿圖中的虛線剪成四個全等的小長

方形,再按圖2圍成一個較大的正方形.

 


   (1)請用兩種方法表示圖2中陰影部分的面積(只需表示,不必化簡);

   (2)比較(1)的兩種結果,你能得到怎樣的等量關系?

   (3)請你用(2)中得到的等量關系解決下面問題:如果m-n=4,mn=12,求m+n的值.

查看答案和解析>>

同步練習冊答案