(2009•張家界)計(jì)算:
【答案】分析:本題涉及零指數(shù)冪、負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、二次根式化簡(jiǎn)四個(gè)考點(diǎn).在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果.
解答:解:原式=
=
=
=2.
點(diǎn)評(píng):本題考查實(shí)數(shù)的運(yùn)算能力,解決此類(lèi)題目的關(guān)鍵是熟記特殊角的三角函數(shù)值,熟練掌握負(fù)整數(shù)指數(shù)冪、零指數(shù)冪、二次根式、絕對(duì)值等考點(diǎn)的運(yùn)算.
注意:負(fù)指數(shù)為正指數(shù)的倒數(shù);任何非0數(shù)的0次冪等于1;絕對(duì)值的化簡(jiǎn);二次根式的化簡(jiǎn)是根號(hào)下不能含有分母和能開(kāi)方的數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•張家界)在建立平面直角坐標(biāo)系的方格紙中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)P的坐標(biāo)為(-1,0),請(qǐng)按要求畫(huà)圖與作答.
(1)把△ABC繞點(diǎn)P旋轉(zhuǎn)180°得△A′B′C′.
(2)把△ABC向右平移7個(gè)單位得△A″B″C″.
(3)△A′B′C′與△A″B″C″是否成中心對(duì)稱(chēng),若是,找出對(duì)稱(chēng)中心P′,并寫(xiě)出其坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2009•張家界)在平面直角坐標(biāo)系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過(guò)點(diǎn)C作圓的切線交x軸于點(diǎn)D.
(1)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn),問(wèn):是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《圓》(09)(解析版) 題型:解答題

(2009•張家界)在平面直角坐標(biāo)系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過(guò)點(diǎn)C作圓的切線交x軸于點(diǎn)D.
(1)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn),問(wèn):是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省成都市石室錦城外國(guó)語(yǔ)中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2009•張家界)將函數(shù)y=-3x+3的圖象向上平移2個(gè)單位,得到函數(shù)    的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖南省張家界市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•張家界)在平面直角坐標(biāo)系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過(guò)點(diǎn)C作圓的切線交x軸于點(diǎn)D.
(1)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn),問(wèn):是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案