已知:如圖,梯形ABCD中,DC∥AB,AD=BC,對角線AC、BD交于點O,∠COD=60°,若CD=3,

AB=8,求梯形ABCD的高.

 

【答案】

解:過點C作CE∥DB,交AB的延長線于點E.

∴∠ACE=∠COD=60°.                      

又∵DC∥AB,  ∴四邊形DCEB為平行四邊形.

∴BD=CE,BE = DC =3,AE=AB+BE=8+3=11.

又∵DC∥AB,AD=BC,

∴DB=AC =CE.

∴△ACE為等邊三角形.

∴AC=AE=11, ∠CAB=60°.                     

    過點C作CH⊥AE于點H.在Rt△ACH中,

 CH=AC·sin∠CAB=11×=

∴梯形ABCD的高為.                            

【解析】略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、已知:如圖,梯形ABCD中,AD∥BC,AB=CD,對角線AC與BD相交于點O,則圖中全等三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,梯形ABCD中,AD∥BC,∠DAB=120°,tanC=
3
6
,BC=18,AD=AB.求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、已知,如圖,梯形ABCD中,AB∥CD,△COD與△AOB的周長比為1:2,則CD:AB=
1:2
,△COD與△BOC的面積比為
1:4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,梯形ABCD中,AB∥CD,AD=BC,對角線AC、BD交于M,AB=2,CD=4,∠CMD=90°,求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:中華題王 數(shù)學 九年級上 (北師大版) 北師大版 題型:047

已知:如圖,梯形AB-CD中,AB∠DC,E是BC的中點,AE、DC的延長線相交于點F,連結AC、BF.(1)求證:AB=CF;(2)四邊形ABFC是什么四邊形,并說明你的理由.

查看答案和解析>>

同步練習冊答案