【題目】如圖,已知△ABC為等邊三角形,D、E分別為BC、AC邊上的兩動點(與點A、B、C不重合),且總使CD=AE,AD與BE相交于點F.
(1)求證:AD=BE;
(2)求∠BFD的度數(shù).
【答案】
(1)證明:∵△ABC為等邊三角形,
∴∠BAC=∠C=60°,AB=CA.
在△ABE與△CAD中,
,
∴△ABE≌△CAD(SAS).
∴AD=BE
(2)解:∵△ABE≌△CAD,
∴∠ABE=∠CAD.
∵∠BFD=∠ABE+∠BAD,
∴∠BFD=∠CAD+∠BAD=∠BAC=60°
【解析】(1)根據(jù)等邊三角形的性質可知∠BAC=∠C=60°,AB=CA,結合AE=CD,可證明△ABE≌△CAD,從而證得結論;(2)根據(jù)∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠BAD=∠BAC=60°.
【考點精析】利用等邊三角形的性質對題目進行判斷即可得到答案,需要熟知等邊三角形的三個角都相等并且每個角都是60°.
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中 ,AB=8 , BC=6, 點P在邊AB上。若將△DAP沿DP折疊 ,使點A落在矩形對角線上的點A,處,則AP的長為__________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市6月上旬前5天的最高氣溫如下(單位:℃):28,29,31,29,32,對于這組數(shù)據(jù),眾數(shù)是_____,中位數(shù)是_____,極差是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把兩塊含45°角的直角三角板按圖1所示的方式放置,點D在BC上,連結BE、AD,AD的延長線交BE于點F.
(1)如圖1,求證:BE=AD,AF⊥BE;
(2)將△ABC繞點C順時針旋轉(如圖2),連結BE、AD,AD分別交BE、BC于點F、G,那么(1)中的結論還成立嗎?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知⊙O的半徑是4,△ABC內接于⊙O,AC=.
①求∠ABC的度數(shù);
②已知AP是⊙O的切線,且AP=4,連接PC.判斷直線PC與⊙O的位置關系,并說明理由;
(2)如圖2,已知ABCD的頂點A、B、D在⊙O上,頂點C在⊙O內,延長BC交⊙O于點E,連接DE.求證:DE=DC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,OC是∠AOB的平分線.
(1)當∠AOB=60°時,求∠AOC的度數(shù);
(2)在(1)的條件下,∠EOC=90°,請在圖中補全圖形,并求∠AOE的度數(shù);
(3)當∠AOB=α時,∠EOC=90°,直接寫出∠AOE的度數(shù).(用含α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小劉和小李參加射擊訓練,各射擊10次的平均成績相同,如果他們射擊成績的方差分別是S小劉2=0.6,S小李2=1.4,那么兩人中射擊成績比較穩(wěn)定的是______;
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com