【題目】對幾何命題進(jìn)行逆向思考是幾何研究中的重要策略,我們知道,等腰三角形兩腰上的高 線相等,那么等腰三角形兩腰上的中線,兩底角的角平分線也分別相等嗎?它們的逆命 題會(huì)正確嗎?
(1)請判斷下列命題的真假,并在相應(yīng)命題后面的括號(hào)內(nèi)填上“真”或“假”.
①等腰三角形兩腰上的中線相等 ;
②等腰三角形兩底角的角平分線相等 ;
③有兩條角平分線相等的三角形是等腰三角形 ;
(2)請寫出“等腰三角形兩腰上的中線相等”的逆命題,如果逆命題為真,請畫出圖形,寫出已知、求證并進(jìn)行證明,如果不是,請舉出反例.
【答案】(1)①真;②真;③真;(2)逆命題是:有兩邊上的中線相等的三角形是等腰三角形;見解析.
【解析】
(1)根據(jù)命題的真假判斷即可;
(2)根據(jù)全等三角形的判定和性質(zhì)進(jìn)行證明即可.
(1)①等腰三角形兩腰上的中線相等是真命題;
②等腰三角形兩底角的角平分線相等是真命題;
③有兩條角平分線相等的三角形是等腰三角形是真命題;
故答案為:真;真;真;
(2)逆命題是:有兩邊上的中線相等的三角形是等腰三角形;
已知:如圖,△ABC中,BD,CE分別是AC,BC邊上的中線,且BD=CE,
求證:△ABC是等腰三角形;
證明:連接DE,過點(diǎn)D作DF∥EC,交BC的延長線于點(diǎn)F,
∵BD,CE分別是AC,BC邊上的中線,
∴DE是△ABC的中位線,
∴DE∥BC,
∵DF∥EC,
∴四邊形DECF是平行四邊形,
∴EC=DF,
∵BD=CE,
∴DF=BD,
∴∠DBF=∠DFB,
∵DF∥EC,
∴∠F=∠ECB,
∴∠ECB=∠DBC,
在△DBC與△ECB中
,
∴△DBC≌△ECB,
∴EB=DC,
∴AB=AC,
∴△ABC是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,,,是邊上一點(diǎn),連接,將矩形沿折疊,頂點(diǎn)恰好落在邊上點(diǎn)處,延長交的延長線于點(diǎn).
(1)求線段的長;
(2)如圖2,,分別是線段,上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且,設(shè),.
①寫出關(guān)于的函數(shù)解析式,并求出的最小值;
②是否存在這樣的點(diǎn),使是等腰三角形?若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,且經(jīng)過弦CD的中點(diǎn)H,已知sin∠CDB=,BD=5,則AH的長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B兩點(diǎn)分別在x軸和y軸的正半軸上,連接AB與反比例函數(shù)的圖象交于C、D兩點(diǎn).
(1)當(dāng)0A=6,OB=3,點(diǎn)D的橫坐標(biāo)為2時(shí),則k=____,=_______.
(2)當(dāng)0A=a,OB=b時(shí),請猜測AC與BD之間的數(shù)量關(guān)系,并說明理由.
(3)如圖,以D為頂點(diǎn)且過點(diǎn)O的拋物線分別交函數(shù)的圖像和x軸于點(diǎn)E、F,連接CF,設(shè)=m..
①若∠AFC=90°,則m的值為多少?
②若∠ACF=90°,且m>時(shí),請用含m的代數(shù)式表示tan∠BAO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將量角器和含30°角的一塊直角三角板緊靠著放在同一平面內(nèi),使三角板的0cm刻度線與量角器的0°線在同一直線上,且直徑DC是直角邊BC的兩倍,過點(diǎn)A作量角器圓弧所在圓的切線,切點(diǎn)為E,則點(diǎn)E在量角器上所對應(yīng)的度數(shù)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】揚(yáng)州市“五個(gè)一百工程”在各校普遍開展,為了了解某校學(xué)生每天課外閱讀所用的時(shí)間情況,從該校學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,并將結(jié)果繪制成如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
根據(jù)以上信息,請回答下列問題:
(1)表中a= ,b= ;
(2)請補(bǔ)全頻數(shù)分布直方圖;
(3)若該校有學(xué)生1200人,試估計(jì)該校學(xué)生每天閱讀時(shí)間超過1小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù):1、3、3、5,若添加一個(gè)數(shù)據(jù)3,則下列各統(tǒng)計(jì)量中會(huì)發(fā)生變化是( )
A. 方差B. 平均數(shù)C. 中位數(shù)D. 眾數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子廠商設(shè)計(jì)了一款制造成本為18元新型電子廠品,投放市場進(jìn)行試銷.經(jīng)過調(diào)查,得到每月銷售量y(萬件)與銷售單價(jià)x(元)之間的部分?jǐn)?shù)據(jù)如下:
銷售單價(jià)x(元/件) | … | 20 | 25 | 30 | 35 | … |
每月銷售量y(萬件) | … | 60 | 50 | 40 | 30 | … |
(1)求出每月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(2)求出每月的利潤z(萬元)與銷售單x(元)之間的函數(shù)關(guān)系式.
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售利潤率不能高于50%,而且該電子廠制造出這種產(chǎn)品每月的制造成本不能超過900萬元.那么并求出當(dāng)銷售單價(jià)定為多少元時(shí),廠商每月能獲得最大利潤?最大利潤是多少?(利潤=售價(jià)﹣制造成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與雙曲線交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(-4,-2),C為雙曲線上一點(diǎn),且在第一象限內(nèi),若△AOC面積為6,則點(diǎn)C坐標(biāo)為( )
A. (4,2) B. (2,3) C. (3,4) D. (2,4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com