2.如圖,梯形OABC中,AB∥OC,BC所在的直線為y=x+12,點A坐標為
A (0,b),其中b>0,點Q從點C出發(fā)經(jīng)點B到達點A,它在BC上的速度為每秒$\sqrt{2}$個單位,它在AB上的速度為每秒1個單位,點P從點C出發(fā),在線段CO上來回運動,速度為每秒2個單位,當Q到達A點時,P也停止運動. P、Q兩點同時從C點出發(fā),運動時間為t秒,過P作直線l垂直于x軸,如圖,若以BQ為半徑作⊙Q.
(1)當⊙Q第一次和x軸相切時,直接寫出t和b的關(guān)系式;(用t表示b)
(2)當Q在AB上運動時,若⊙Q和x軸始終沒有交點,求b的取值范圍;
(3)當b=4時,求直線l與⊙Q從第一次相切到第二次相切經(jīng)過的時間.

分析 (1)當⊙Q第一次和x軸相切時,設(shè)切點為N,作BM⊥x軸,垂足為M,連接QN,用t的代數(shù)式表示QC、QB,根據(jù)QC=$\sqrt{2}$QB解決問題.
(2)根據(jù)AB<AO,列出關(guān)于b的不等式即可解決.
(3)根據(jù)題意在點P返回圖中與⊙Q相切,此時⊙Q在線段AB上,根據(jù)BM+AM=8列出關(guān)于t的方程解決.

解答 解:(1)當⊙Q第一次和x軸相切時,設(shè)切點為N,作BM⊥x軸,垂足為M,連接QN,
∵AB∥CO,BM∥AO,
∴四邊形AOMB是平行四邊形,
∵∠AOM=90°,
∴四邊形AOMB是矩形,
∴BM=AO=b,
∵直線BC為y=x+12,
∴C(-12,0),F(xiàn)(0,12),
∴OC=OF,
∴∠BCO=45°,
∵QC=$\sqrt{2}$t,QN⊥CN,
∴QB=QN=t,BC=$\sqrt{2}$b
∴$\sqrt{2}$t+t=$\sqrt{2}$b
b=(1+$\frac{\sqrt{2}}{2}$)t.
(2)當AB<AO時⊙Q與x軸沒有交點,即0<12-b<b
∴6<b<12.
(3)第一次相切時,設(shè)切點為M,作QN⊥x軸,連接QM,
∵AO=4,
∴B(-8,4),BC=4$\sqrt{2}$
∵∠QNP=∠NPM=∠QMP=90°,
∴四邊形QNPM是矩形,
∴QB=QM=NP=4$\sqrt{2}$-$\sqrt{2}$t,
∵PC=CN+NP,
∴2t=t+4$\sqrt{2}$-$\sqrt{2}$t,
∴t=8-4$\sqrt{2}$,
由題意⊙Q和點P返回途中第二次相遇,如圖,設(shè)切點為M,
∵AM=2t-12,BM=2(t-4),AB=8
∴2t-12+2(t-4)=8
∴t=7,
∴直線l與⊙Q從第一次相切到第二次相切經(jīng)過的時間為7-(8-4$\sqrt{2}$)=(4$\sqrt{2}$-1)秒.

點評 本題考查一次函數(shù)、圓、直線與圓相切的判定、等腰梯形、矩形等有關(guān)知識,本題綜合性比較強,屬于運動類問題,根據(jù)題意正確畫出圖形是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.如圖,正方形ABCD中,AB=2,E為對角線BD上一點,且DE=AD,EF⊥AB于F,則EF=2-$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖,某窗戶由矩形和弓形組成,已知弓形的跨度AB=6m,弓形的高EF=2m,現(xiàn)設(shè)計安裝玻璃,請幫工程師求出$\widehat{AB}$所在圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.已知關(guān)于x的一元二次方程x2-3$\sqrt{2}$x+$\frac{3}{2}$k=0有實數(shù)根,則k的取值范圍是k≤3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.解方程:$\frac{x-1}{5}$=$\frac{x-2}{2}$+x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.已知OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸上,點C在y軸上,OA=10,OC=6,
(1)如圖甲:在OA上選取一點D,將△COD沿CD翻折,使點O落在BC邊上,記為E.求折痕CD 所在直線的解析式;
(2)如圖乙:在OC上選取一點F,將△AOF沿AF翻折,使點O落在BC邊,記為G.
①求折痕AF所在直線的解析式;
②再作GH∥AB交AF于點H,若拋物線$y=-\frac{1}{12}{x^2}+h$過點H,求此拋物線的解析式,并判斷它與直線AF的公共點的個數(shù).
(3)如圖丙:一般地,在以O(shè)A、OC上選取適當?shù)狞cI、J,使紙片沿IJ翻折后,點O落在BC邊上,記為K.請你猜想:①折痕IJ所在直線與第(2)題②中的拋物線會有幾個公共點;②經(jīng)過K作KL∥AB與IJ相交于L,則點L是否必定在拋物線上.將以上兩項猜想在(l)的情形下分別進行驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,線段AB=4,C為線段AB上的一個動點,以AC、BC為邊作等邊△ACD和等邊△BCE,⊙O外接于△CDE,則⊙O半徑的最小值為( 。
A.4B.$\frac{2\sqrt{3}}{3}$C.$\frac{3\sqrt{2}}{2}$D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.如圖,在Rt△ABC中,∠B=90°,∠ACB=45°,∠D=30°,B、C、D在同一直線上,連接AD,若AB=$\sqrt{3}$,則sin∠CAD=$\frac{\sqrt{6}-\sqrt{2}}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.若正比例函數(shù)y=(1-2m)x的圖象經(jīng)過點A(3,y1)和點B(5,y2),且y1>y2,則m的取值范圍是m>$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案