CD |
AF |
ED |
AE |
x |
40 |
DE |
30 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
底邊 |
腰 |
BC |
AB |
1 |
2 |
| ||
2 |
3 |
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A. | B.1 | C. | D.2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011屆北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時(shí)
sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad 的值為( ▼ )
A. | B.1 | C. | D.2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時(shí)
sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad 的值為( ▼ )
A. B. 1 C. D. 2
(2)對于,∠A的正對值sad A的取值范圍是 ▼ .
(3)已知,其中為銳角,試求sad的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,直線與軸,軸分別交于點(diǎn)A,點(diǎn)B,動點(diǎn)P在第一象限內(nèi),由點(diǎn)P向軸,軸所作的垂線PM,PN(垂足為M,N)分別與直線AB相交于點(diǎn)E,點(diǎn)F,當(dāng)點(diǎn)P運(yùn)動時(shí),矩形PMON的面積為定值2.
(1)求的度數(shù);
(2)求證:△∽△;
(3)當(dāng)點(diǎn)E,F都在線段AB上時(shí),由三條線段
AE,EF,BF組成一個(gè)三角形,記此三角
形的外接圓面積為,△的面積為.
試探究:是否存在最小值?若存在,
請求出該最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com