精英家教網 > 初中數學 > 題目詳情

【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF= BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長.

【答案】
(1)證明:∵D、E分別為AB、AC的中點,

∴DE為△ABC的中位線,

∴DE BC,

∵延長BC至點F,使CF= BC,

∴DE=FC;


(2)解:∵DE FC,

∴四邊形DEFC是平行四邊形,

∴DC=EF,

∵D為AB的中點,等邊△ABC的邊長是2,

∴AD=BD=1,CD⊥AB,BC=2,

∴DC=EF=


【解析】(1)直接利用三角形中位線定理得出DE BC,進而得出DE=FC;(2)利用平行四邊形的判定與性質得出DC=EF,進而利用等邊三角形的性質以及勾股定理得出EF的長.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】關于x的方程2x2﹣4x+(m﹣1)=0有兩個不相等的實數根,則m的取值范圍是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O的直徑AB垂直于弦CD,垂足為點E,過點CO 的切線,交AB的延長線于點P,聯結PD

1)判斷直線PDO的位置關系,并加以證明;

2)聯結CO并延長交O于點F,聯結FPCD于點G,如果CF=10,cosAPC=,求EG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若代數式x2-8x+a可化為(x-b)2+1,則a+b=______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在矩形ABCD中,已知AB=4,BC=3,矩形在直線l上繞其右下角的頂點B向右旋轉90°至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉90°至圖②位置,…,以此類推,這樣連續(xù)旋轉2017次后,頂點A在整個旋轉過程中所經過的路程之和為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.

(1)試探究AP與BQ的數量關系,并證明你的結論;
(2)當AB=3,BP=2PC,求QM的長;
(3)當BP=m,PC=n時,求AM的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列等式中正確的是( 。

A. ﹣(ab)=ba B. ﹣(a+b)=﹣a+b

C. 2(a+1)=2a+1 D. ﹣(3﹣x)=3+x

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】用配方法解方程x2+8x+7=0,則配方正確的是( )
A.(x﹣4)2=9
B.(x+4)2=9
C.(x﹣8)2=16
D.(x+8)2=57

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某平行四邊形的一條邊長為12cm,則它的兩條對角線長可以為(
A.6cm,12cm
B.18cm,20cm
C.34cm,10cm
D.10cm,14cm

查看答案和解析>>

同步練習冊答案