【題目】在下列網(wǎng)格圖中,每個小正方形的邊長均為1個單位.在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中做出△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;
(2)若點(diǎn)B的坐標(biāo)為(﹣3,5),試在圖中畫出直角坐標(biāo)系,并標(biāo)出A、C兩點(diǎn)的坐標(biāo);
(3)根據(jù)(2)的坐標(biāo)系作出與△ABC關(guān)于原點(diǎn)對稱的圖形△A2B2C2 , 并標(biāo)出B2、C2兩點(diǎn)的坐標(biāo).
【答案】
(1)
解:△AB1C1如圖所示;
(2)
解:如圖所示,A(0,1),C(﹣3,1)
(3)
解:△A2B2C2如圖所示,B2(3,﹣5),C2(3,﹣1).
【解析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)B、C的對應(yīng)點(diǎn)B1、C1的位置,然后與點(diǎn)A順次連接即可;(2)以點(diǎn)B向右3個單位,向下5個單位為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,然后寫出點(diǎn)A、C的坐標(biāo)即可;(3)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于原點(diǎn)的對稱點(diǎn)A2、B2、C2的位置,然后順次連接即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,如圖所示,△AOB是邊長為2的等邊三角形,將△AOB繞著點(diǎn)B按順時針方向旋轉(zhuǎn)得到△DCB,使得點(diǎn)D落在x軸的正半軸上,連接OC、AD.
(1)求證:OC=AD;
(2)求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知相交直線AB和CD及另一直線MN,如果要在MN上找出與AB,CD距離相等的點(diǎn),則這樣的點(diǎn)至少有_____個,最多有_____個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對折矩形紙片ABCD,使AB與DC重合得到折痕EF,將紙片展平;再一次折疊,使點(diǎn)D落到EF上點(diǎn)G處,并使折痕經(jīng)過點(diǎn)A,展平紙片后∠DAG的大小為( )
A.30°
B.45°
C.60°
D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點(diǎn)B(1,4)和點(diǎn)E(3,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)D在線段OC上,且BD⊥DE,BD=DE,求D點(diǎn)的坐標(biāo);
(3)在條件(2)下,在拋物線的對稱軸上找一點(diǎn)M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時點(diǎn)M的坐標(biāo);
(4)在條件(2)下,從B點(diǎn)到E點(diǎn)這段拋物線的圖象上,是否存在一個點(diǎn)P,使得△PAD的面積最大?若存在,請求出△PAD面積的最大值及此時P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,下列結(jié)論: ①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.
其中正確的是( )
A.①④
B.②④
C.①②③
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)如圖1,△ABC為等邊三角形,現(xiàn)將三角板中的60°角與∠ACB重合,再將三角板繞點(diǎn)C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D,在三角板斜邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=30°,連接AF,EF.
①求∠EAF的度數(shù);
②DE與EF相等嗎?請說明理由;
(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點(diǎn)C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于45°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D,在三角板另一直角邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=45°,連接AF,EF,請直接寫出探究結(jié)果:
①求∠EAF的度數(shù);
②線段AE,ED,DB之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2 . 其中正確的是( )
A.②③
B.②④
C.②③④
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+2xa+c經(jīng)過A(﹣4,0),B(0,4)兩點(diǎn),與x軸交于另一點(diǎn)C,直線y=x+5與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)求拋物線的解析式;
(2)點(diǎn)P是第二象限拋物線上的一個動點(diǎn),連接EP,過點(diǎn)E作EP的垂線l,在l上截取線段EF,使EF=EP,且點(diǎn)F在第一象限,過點(diǎn)F作FM⊥x軸于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段FM的長度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,過點(diǎn)E作EH⊥ED交MF的延長線于點(diǎn)H,連接DH,點(diǎn)G為DH的中點(diǎn),當(dāng)直線PG經(jīng)過AC的中點(diǎn)Q時,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com