如圖,已知拋物線 交 軸于A、B兩點(diǎn),交 軸于點(diǎn)C,拋物線的對(duì)稱軸交 軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為( ,0).
(1)求拋物線的對(duì)稱軸及點(diǎn)A的坐標(biāo);
(2)在平面直角坐標(biāo)系 中是否存在點(diǎn)P,與A、B、C三點(diǎn)構(gòu)成一個(gè)平行四邊形?若存在,請(qǐng)寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連結(jié)CA與拋物線的對(duì)稱軸交于點(diǎn)D,在拋物線上是否存在點(diǎn)M,使得直線CM把四邊形DEOC分成面積相等的兩部分?若存在,請(qǐng)求出直線CM的解析式;若不存在,請(qǐng)說(shuō)明理由.
(1)① 對(duì)稱軸
② 當(dāng)時(shí),有
解之,得 ,
∴ 點(diǎn)A的坐標(biāo)為(,0).
(2)滿足條件的點(diǎn)P有3個(gè),分別為(,3),(2,3),(,).
(3)存在.
當(dāng)時(shí), ∴ 點(diǎn)C的坐標(biāo)為(0,3)
∵ DE∥軸,AO3,EO2,AE1,CO3
∴ ∽ ∴ 即 ∴ DE1
∴ 4
在OE上找點(diǎn)F,使OF,此時(shí)2,直線CF把四邊形DEOC
分成面積相等的兩部分,交拋物線于點(diǎn)M.
設(shè)直線CM的解析式為,它經(jīng)過(guò)點(diǎn).
則
解之,得 ∴ 直線CM的解析式為 )
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知拋物線交x軸于C(x1,0),D(x2,0)兩點(diǎn),(x1<x2)且
(1)試確定m的值;
(2)過(guò)點(diǎn)A(-1,-5)和拋物線的頂點(diǎn)M的直線交x軸于點(diǎn)B,求B點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)P(a,b)是拋物線上點(diǎn)C到點(diǎn)M之間的一個(gè)動(dòng)點(diǎn)(含C、M點(diǎn)),是以PO為腰、底邊OQ在x軸上的等腰三角形,過(guò)點(diǎn)Q作x軸的垂線交直線AM于點(diǎn)R,連結(jié)PR。設(shè)的面積為S,求S與a之間的函數(shù)關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知拋物線交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B.
1.求A、B兩點(diǎn)的坐標(biāo),并求直線AB的解析式;
2.設(shè)()是直線上的一點(diǎn),Q是OP的中點(diǎn)(O是原點(diǎn)),以PQ為對(duì)角線作正方形PEQF.若正方形PEQF與直線AB有公共點(diǎn),求x的取值范圍;
3.在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省初三第二學(xué)期質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知拋物線交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B.
1.求直線AB的解析式;
2.設(shè)P(x,y)(x>0)是直線y = x上的一點(diǎn),Q是OP 的中點(diǎn)(O是原點(diǎn)),以PQ為對(duì)角線作正方形PEQF,若正方形PEQF與直線AB有公共點(diǎn),求x的取值范圍;
3.在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com