【答案】
分析:可以按9個(gè)正方形排成一排,疊4層,先放入圓內(nèi),然后(1)上下再加一層,每層8個(gè),現(xiàn)在共有6層.
(2)在前面的基礎(chǔ)上,上下各加6個(gè),現(xiàn)在共有8層.
(3)最后上下還可加一層,但每層只能是一個(gè),共10層,這樣各個(gè)層的正方形的個(gè)數(shù)就可以得到.
解答:解:答:可以切割出66個(gè)小正方形.(1分)
方法一:
(1)我們把10個(gè)小正方形排成一排,看成一個(gè)長(zhǎng)條形的矩形,這個(gè)矩形剛好能放入直徑為10.05cm的圓內(nèi),如圖中矩形ABCD.
∵BC=10AB=10.
∴對(duì)角線AC
2=100+1=101<10.05
2.(3分)
(2)我們?cè)诰匦蜛BCD的上方和下方可以分別放入9個(gè)小正方形.
∵新加入的兩排小正方形連同ABCD的一部分可看成矩形EFGH,矩形EFGH的長(zhǎng)為9,高為3,對(duì)角線EG
2=9
2+3
2=81+9=90<10.05
2.但是新加入的這兩排小正方形不能是每排10個(gè),因?yàn)椋?br />10
2+3
2=100+9=109>10.05
2.(6分)
(3)同理:8
2+5
2=64+25=89<10.05
2,
9
2+5
2=81+25=106>10.05
2,
∴可以在矩形EFGH的上面和下面分別再排下8個(gè)小正方形,那么現(xiàn)在小正方形已有了5層.(8分)
(4)再在原來(lái)的基礎(chǔ)上,上下再加一層,共7層,新矩形的高可以看成是7,那么新加入的這兩排,每排都可以是7個(gè)但不能是8個(gè).
∵7
2+7
2=49+49=98<10.05
2,
8
2+7
2=64+49=113>10.05
2.(9分)
(5)在7層的基礎(chǔ)上,上下再加入一層,新矩形的高可以看成是9,這兩層,每排可以是4個(gè)但不能是5個(gè).
∵4
2+9
2=16+81=97<10.05
2,
5
2+9
2=25+81=106>10.05
2,
現(xiàn)在總共排了9層,高度達(dá)到了9,上下各剩下約0.5cm的空間,因?yàn)榫匦蜛BCD的位置不能調(diào)整,
故再也放不下一個(gè)小正方形了.
∴10+2×9+2×8+2×7+2×4=66(個(gè)).(10分)
方法二:
學(xué)生也可能按下面的方法排列,只要說(shuō)理清楚,評(píng)分標(biāo)準(zhǔn)參考方法一.
可以按9個(gè)正方形排成一排,疊4層,先放入圓內(nèi),
然后:(1)上下再加一層,每層8個(gè),現(xiàn)在共有6層;
(2)在前面的基礎(chǔ)上,上下各加6個(gè),現(xiàn)在共有8層;
(3)最后上下還可加一層,但每層只能是一個(gè),共10層.
這樣共有:4×9+2×8+2×6+2×1=66(個(gè)).
點(diǎn)評(píng):本題是圓與正方形相結(jié)合的問(wèn)題,正確理解題意是解決本題的關(guān)鍵.