【題目】閱讀例題,回答問題:

例題:已知二次三項(xiàng)式:x24x+m有一個(gè)因式是x+3,求另一個(gè)因式以及m的值.

解:設(shè)另一個(gè)因式為x+n,得x24x+m(x+3)(x+n),則x24x+mx2+(n+3)x+3n

∴另一個(gè)因式為x7,m21

仿照以上方法解答下面的問題:

已知二次三項(xiàng)式2x2+3x+k有一個(gè)因式是2x5,求另一個(gè)因式以及k的值.

【答案】另一個(gè)因式為(x+4),k的值為20

【解析】

設(shè)另一個(gè)因式為(x+n),得2x2+5xk(2x3)(x+n)2x2+(2n3)x3n,可知2n35,k3n,繼而求出nk的值及另一個(gè)因式.

解:設(shè)另一個(gè)因式為(x+n),得2x2+3xk(2x5)(x+n)2x2+(2n5)x5n

解得:n4,k20,

故另一個(gè)因式為(x+4),k的值為20

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC內(nèi)接于⊙O,AB為⊙O的直徑,BDAB,交AC的延長(zhǎng)線于點(diǎn)D

1EBD的中點(diǎn),連結(jié)CE,求證:CE是⊙O的切線;

2)若AC3CD,求∠A的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解全校400名學(xué)生參加課外鍛煉的情況,隨機(jī)對(duì)40名學(xué)生一周內(nèi)平均每天參加課外鍛煉的時(shí)間進(jìn)行了調(diào)查,結(jié)果如下:(單位:分)

40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36

34 53 38 40 39 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45

(1)補(bǔ)全頻率分布表和頻率分布直方圖.

分組

頻數(shù)

頻率

4.522.5

2

0.050

22.530.5

3

30.538.5

10

0.250

38.546.5

19

46.554.5

5

0.125

54.562.5

1

0.025

合計(jì)

40

1.000

(2)填空:在這個(gè)問題中,總體是____,樣本是____.由統(tǒng)計(jì)結(jié)果分析的,這組數(shù)據(jù)的平均數(shù)是38.35(),眾數(shù)是____,中位數(shù)是_____

(3)如果描述該校400名學(xué)生一周內(nèi)平均每天參加課外鍛煉時(shí)間的總體情況,你認(rèn)為用平均數(shù)、眾數(shù)、中位數(shù)中的哪一個(gè)量比較合適?

(4)估計(jì)這所學(xué)校有多少名學(xué)生,平均每天參加課外鍛煉的時(shí)間多于30分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線交于點(diǎn)A,過點(diǎn)AO的平行線交雙曲線于點(diǎn)B,連接AB并延長(zhǎng)與y軸交于點(diǎn),則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC紙片的一角沿DE向下翻折,使點(diǎn)A落在BC邊上,且DEBC,如圖所示,則下列結(jié)論不成立的是( )

A. AED=∠BB. ADABDEBC

C. DE=BCD. ADB是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,反比例函數(shù)y=x0)的圖象經(jīng)過矩形OABC的對(duì)角線AC的中點(diǎn)M,分別與AB,BC交于點(diǎn)D、E,若BD=3,OA=4,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中.ABAC,ADBCD,作DEACE,FAB中點(diǎn),連EFAD于點(diǎn)G

(1)求證:AD2ABAE;

(2)AB3AE2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小米手機(jī)越來越受到大眾的喜愛,各種款式相繼投放市場(chǎng),某店經(jīng)營(yíng)的A款手機(jī)去年銷售總額為50000元,今年每部銷售價(jià)比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.

1)今年A款手機(jī)每部售價(jià)多少元?

2)該店計(jì)劃新進(jìn)一批A款手機(jī)和B款手機(jī)共60部,且B款手機(jī)的進(jìn)貨數(shù)量不超過A款手機(jī)數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批手機(jī)獲利最多?A,B兩款手機(jī)的進(jìn)貨和銷售價(jià)格如下表:

A款手機(jī)

B款手機(jī)

進(jìn)貨價(jià)格(元)

1100

1400

銷售價(jià)格(元)

今年的銷售價(jià)格

2000

查看答案和解析>>

同步練習(xí)冊(cè)答案