如圖,四邊形ABCD中,AD∥BC,∠BCD的平分線CE⊥AB于點E,BE=2AE.若四邊形AECD的面積為7,則四邊形ABCD的面積為________.

15
分析:延長BA與CD,兩延長線交于點F,由CE垂直于BF,得到一對直角相等,由CE為角平分線得到一對角相等,再由CE為公共邊,利用ASA可得出三角形CFE與三角形CFB全等,由全等三角形的對應(yīng)邊相等得到CF=CB,且BE=EF,由BE=2AE,得到EF=2AE,即A為EF的中點,由等腰三角形的兩底角相等得到一對角相等,再由兩直線平行得到一對同位角相等,等量代換并利用等角對等邊得到三角形AFD為等腰三角形,且三角形AFD與三角形BFC相似,相似比為1:4,可得出面積之比為1:16,設(shè)三角形AFD的面積為x,則三角形BFC的面積為16x,可得出三角形EFC的面積為8x,再由四邊形AECD的面積為7,由四邊形AECD的面積+三角形AFD的面積等于三角形EFC的面積列出關(guān)于x的方程,求出方程的解得到x的值,確定出三角形AFD與三角形BFC的面積,用三角形BFC的面積減去三角形AFD的面積,即可求出四邊形ABCD的面積.
解答:解:延長BA,延長CD,兩延長線交于點F,如圖所示:
∵CE⊥BF,
∴∠CEF=∠CEB=90°,
∵CE為∠BCD的平分線,
∴∠FCE=∠BCE,
在△FCE和△BCE中,
,
∴△FCE≌△BCE(ASA),
∴CF=CB,BE=FE,
∴∠F=∠B,
∵AD∥BC,
∴∠FAD=∠B,
∴∠F=∠FAD,
∴△AFD為等腰三角形,
又BE=2AE,
∴EF=2AE,即A為EF的中點,
∴△AFD∽△BFC,且相似比為1:4,
∴S△AFD:S△BFC=1:16,
設(shè)S△AFD=x,則S△BFC=16x,即S△EFC=8x,
由四邊形AECD的面積為7,得到S△EFC=x+7,
∴8x=x+7,
解得:x=1,
∴S△AFD=1,S△BFC=16,
則四邊形ABCD的面積S=S△BFC-S△AFD=15.
故答案為:15
點評:此題考查了等腰三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),以及平行線的性質(zhì),熟練掌握判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案