如圖,在平面直角坐標(biāo)系中,△ABC的邊AB在x軸上,且OA>OB,以AB為直徑的圓過點(diǎn)C.若點(diǎn)C的坐精英家教網(wǎng)標(biāo)為(0,2),AB=5,A,B兩點(diǎn)的橫坐標(biāo)xA,xB是關(guān)于x的方程x2-(m+2)x+n-1=0的兩根.
(1)求m,n的值;
(2)若∠ACB平分線所在的直線l交x軸于點(diǎn)D,試求直線l對(duì)應(yīng)的一次函數(shù)解析式;
(3)過點(diǎn)D任作一直線l′分別交射線CA,CB(點(diǎn)C除外)于點(diǎn)M,N.則
1
CM
+
1
CN
的是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.
分析:(1)利用直角三角形的性質(zhì)可知△AOC∽△COB,則CO2=AO•BO,4=AO•(5-AO),解之得:AO=4或AO=1.
即xA=-4,xB=1.再利用根與系數(shù)的關(guān)系代入兩根和與兩根之積的關(guān)系式中求解可知m=-5,n=-3.
(2)過點(diǎn)D作DE∥BC,交AC于點(diǎn)E,易知DE⊥AC,且∠ECD=∠EDC=45°,可證明△AED∽△ACB,利用成比例線段求得OD=
2
3
,即D(-
2
3
,0),利用待定系數(shù)法求出直線l對(duì)應(yīng)的一次函數(shù)解析式為:y=3x+2.
(3)過點(diǎn)D作DE⊥AC于E,DF⊥CN于F.因?yàn)镃D為∠ACB的平分線,所以DE=DF.由△MDE∽△MNC,有
DE
CN
=
MD
MN
,由△DNF∽△MNC,有
DF
CM
=
DN
MN
,得到
DE
CN
+
DF
CM
=
MD
MN
+
DN
MN
=1
,即
1
CM
+
1
CN
=
1
DE
=
3
5
10
解答:精英家教網(wǎng)解:(1)∵以AB為直徑的圓過點(diǎn)C,∴∠ACB=90°,而點(diǎn)C的坐標(biāo)為(0,2),
由CO⊥AB易知△AOC∽△COB,∴CO2=AO•BO,(1分)
即:4=AO•(5-AO),解之得:AO=4或AO=1.
∵OA>OB,∴AO=4,
即xA=-4,xB=1.(2分)
由根與系數(shù)關(guān)系有:
xA+xB=m+2
xAxB=n-1
,
解之m=-5,n=-3.(4分)

(2)如圖,過點(diǎn)D作DE∥BC,交AC于點(diǎn)E,易知DE⊥AC,且∠ECD=∠EDC=45°,
在△ABC中,易得AC=2
5
,BC=
5
,(5分)
∵DE∥BC,∴
AD
DB
=
AE
EC
,∵DE=EC,∴
AD
BD
=
AE
DE
,
又△AED∽△ACB,有
AE
ED
=
AC
BC
,∴
AD
DB
=
AC
BC
=2,(6分)
∵AB=5,設(shè)BD=x,則AD=2x,AB=BD+AD=x+2x=5,解得DB=x=
5
3

則OD=
2
3
,即D(-
2
3
,0),(7分)
易求得直線l對(duì)應(yīng)的一次函數(shù)解析式為:y=3x+2.(8分)
解法二:過D作DE⊥AC于E,DF⊥CN于F,
由S△ACD+S△BCD=S△ABC
求得DE=
2
3
5
.(5分)
又S△BCD=
1
2
BD•CO=
1
2
BC•DF,
求得BD=
5
3
,DO=
2
3
.(7分)
即D(-
2
3
,0),
易求得直線l對(duì)應(yīng)的一次函數(shù)解析式為:y=3x+2.(8分)

(3)過點(diǎn)D作DE⊥AC于E,DF⊥CN于F.
∵CD為∠ACB的平分線,∴DE=DF.
由△MDE∽△MNC,有
DE
CN
=
MD
MN
,(9分)
由△DNF∽△MNC,有
DF
CM
=
DN
MN
. (10分)
DE
CN
+
DF
CM
=
MD
MN
+
DN
MN
=1
,(11分)
1
CM
+
1
CN
=
1
DE
=
3
5
10
.(12分)
點(diǎn)評(píng):主要考查了函數(shù)和幾何圖形的綜合運(yùn)用.解題的關(guān)鍵是會(huì)靈活地運(yùn)用函數(shù)圖象的性質(zhì)和交點(diǎn)的意義求出相應(yīng)的線段的長(zhǎng)度或表示線段的長(zhǎng)度,再結(jié)合具體圖形的性質(zhì)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案