已知二次函數(shù)的對稱軸為,則        
-4  

試題分析:二次函數(shù)的對稱軸在其頂點坐標上,所以求出該二次函數(shù)的頂點就可以解答出本題。
該二次函數(shù)的頂點坐標的橫軸坐標是:,本題中,a=1,b=b
所以

點評:此類試題的解答只需考生把二次函數(shù)的頂點坐標和題目中的已知條件結(jié)合即可求出
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y1=-2x2+2與直線y2=2x+2相交
點A和點B,

(1)求出點A和點B的坐標。
(2)觀察圖象,請直接寫出y1>y2的自變量x的取值范圍。
(3)當x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2
取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.(例如:當x=1時,y1=0,y2=4,y1<y2,此時M=0.) 求:使得M=1的x值。=】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的最小值是(   )
A.1   B.-1 C.2 D.-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線經(jīng)過、兩點,與軸交于另一點

(1)求拋物線的解析式;
(2)已知點在第二象限的拋物線上,求點關(guān)于直線的對稱點的坐標;
(3)在(2)的條件下,連接,點為y軸
上一點,且,求出點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(6分)在平面直角坐標系xOy中,二次函數(shù)的圖象過A(-1,-2)、B(1,0)兩點.

(1)求此二次函數(shù)的解析式;
(2)點x軸上的一個動點,過點Px軸的垂線交直線AB于點M,交二次函數(shù)的圖象于點N.當點M位于點N的上方時,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,頂點為D的拋物線與x軸相交于A、B兩點,與y軸相交于點C,連結(jié)BC,已知△BOC是等腰三角形。

(1)求點B的坐標及拋物線的解析式;
(2)求四邊形ACDB的面積;
(3)若點E(x,y)是y軸右側(cè)的拋物線上不同于點B的任意一點,設(shè)以A,B,C,E為頂點的四邊形的面積為S。①求S與x之間的函數(shù)關(guān)系式。②若以A,B,C,E為頂點的四邊形與四邊形ACDB的面積相等,求點E的坐標。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

教練對小明推鉛球的錄像進行技術(shù)分析,發(fā)現(xiàn)鉛球行進高度y(m)與水平距離x(m)之間的關(guān)系為,由此可知鉛球推出的距離是       m。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖,則a、b、c滿足(      )
A.a(chǎn)<0,b<0,c>0;B.a(chǎn)<0,b<0,c<0;
C.a(chǎn)<0,b>0,c>0;D.a(chǎn)>0,b<0,c>0。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形OABC中,OA=8,OC=4,OA、OC分別在x軸與y軸上,D為OA上一點,且CD=AD.

(1)求點D的坐標;
(2)若經(jīng)過B、C、D三點的拋物線與x軸的另一個交點為E,請直接寫出點E的坐標;
(3)在(2)中的拋物線上位于x軸上方的部分,是否存在一點P,使△PBC的面積等于梯形DCBE的面積?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案