(1)順次連接任意四邊形各邊中點(diǎn)構(gòu)成的四邊形是
 
;
(2)順次連接對(duì)角線(xiàn)相等的四邊形的各邊中點(diǎn),構(gòu)成的四邊形是
 
;
(3)順次連接對(duì)角線(xiàn)互相垂直的四邊形的各邊中點(diǎn)構(gòu)成的四邊形是
 
分析:(1)連接任意四邊形的中點(diǎn),如圖,連接AC,根據(jù)三角形的中位線(xiàn)定理,可以證得HG=FE=
1
2
AC
,并且HG∥EF,所以利用平行四邊形的判定定理可知,該中點(diǎn)四邊形是平行四邊形.
(2)在(1)的基礎(chǔ)上,易證平行四邊形GHBF的一組鄰邊相等,所以根據(jù)菱形的定義可知該中點(diǎn)四邊形是菱形.
(3)在(1)的基礎(chǔ)上,易證平行四邊形GHBF中有一個(gè)角是直角,所以根據(jù)矩形的定義可知該中點(diǎn)四邊形是矩形.
解答:解:(1)如圖所示,任意四邊形ABCD中,E、F、G、H分別為各邊的中點(diǎn),求四邊形EFGH的形狀.
連接AC,
∵E、F、G、H分別為各邊的中點(diǎn),
∴HG、EF分別為△ACD與△ABC的中位線(xiàn),
∴HG∥AC∥EF,HG=EF=
1
2
AC,
∴四邊形EFGH是平行四邊形;
精英家教網(wǎng)
(2)如圖所示,四邊形ABCD的對(duì)角線(xiàn)AC=BD,E、F、G、H分別為各邊的中點(diǎn),求四邊形EFGH的形狀.
連接AC、BD,
∵E、F、G、H分別為各邊的中點(diǎn),
∴EH、GF分別為△ABD與△BCD的中位線(xiàn),
∴EH∥BD∥GF,EH=GF=
1
2
BD,
∴四邊形EFGH是平行四邊形,
同理可得,HG=EF=
1
2
AC,
∵AC=BD,
∴EH=GF,
∴四邊形EFGH是菱形;
精英家教網(wǎng)
(3)如圖所示,四邊形ABCD的對(duì)角線(xiàn)AC⊥BD,E、F、G、H分別為各邊的中點(diǎn),求四邊形EFGH的形狀.
解:連接AC、BD,
∵E、F、G、H分別為各邊的中點(diǎn),
∴EH、GF分別為△ABD與△BCD的中位線(xiàn),
∴EH∥BD∥GF,EH=GF=
1
2
BD,
∴四邊形EFGH是平行四邊形,
同理可得,HG∥AC∥EF,
∵AC⊥BD,
∴HG⊥BD⊥EH,
∴四邊形EFGH是矩形.
精英家教網(wǎng)
故答案分別為平行四邊形、菱形、矩形.
點(diǎn)評(píng):本題考查的是三角形中位線(xiàn)定理,即三角形的中位線(xiàn)平行于底邊且等于底邊的一半.解答此題的關(guān)鍵是根據(jù)題意畫(huà)出圖形,利用數(shù)形結(jié)合解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)順次連接任意四邊形ABCD各邊中點(diǎn),所得的四邊形EFGH是中點(diǎn)四邊形.下列四個(gè)敘述:①中點(diǎn)四邊形EFGH一定是平行四邊形;②當(dāng)四邊形ABCD是矩形時(shí),中點(diǎn)四邊形EFGH也是矩形;③當(dāng)中點(diǎn)四邊形EFGH是菱形時(shí),四邊形ABCD是矩形;④當(dāng)四邊形ABCD是正方形時(shí),中點(diǎn)四邊形EFGH也是正方形.其中正確的是
 
(只填代號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

順次連接任意四邊形四條邊中點(diǎn),所得的四邊形是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

順次連接任意四邊形ABCD各邊中點(diǎn),所得的四邊形EFGH是中點(diǎn)四邊形.下列四個(gè)敘述:①中點(diǎn)四邊形EFGH一定是平行四邊形;②當(dāng)四邊形ABCD是矩形時(shí),中點(diǎn)四邊形EFGH也是矩形;③當(dāng)中點(diǎn)四邊形EFGH是菱形時(shí),四邊形ABCD是矩形;④當(dāng)四邊形ABCD是正方形時(shí),中點(diǎn)四邊形EFGH也是正方形.其中正確的是________(只填代號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

順次連接任意四邊形ABCD各邊中點(diǎn),所得的四邊形EFGH是中點(diǎn)四邊形.下列四個(gè)敘述:①中點(diǎn)四邊形EFGH一定是平行四邊形;②當(dāng)四邊形ABCD是矩形時(shí),中點(diǎn)四邊形EFGH也是矩形;③當(dāng)中點(diǎn)四邊形EFGH是菱形時(shí),四邊形ABCD是矩形;④當(dāng)四邊形ABCD是正方形時(shí),中點(diǎn)四邊形EFGH也是正方形.其中正確的是______(只填代號(hào)).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年云南省楚雄州永仁縣蓮池中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

順次連接任意四邊形四條邊中點(diǎn),所得的四邊形是( )
A.菱形
B.矩形
C.平行四邊形
D.正方形

查看答案和解析>>

同步練習(xí)冊(cè)答案