分析 設(shè)圓心為O,連接AO,BO,AC,AE,易證三角形AOB是等邊三角形,確定∠GFE=∠EAC=30°,再利用弧長公式計(jì)算即可.
解答 解:如圖所示:
設(shè)圓心為O,連接AO,BO,AC,AE,
∵AB=$\sqrt{2}$,AO=BO=$\sqrt{2}$,
∴AB=AO=BO,
∴△AOB是等邊三角形,
∴∠AOB=∠OAB=60°
同理:△FAO是等邊三角形,∠FAB=2∠OAB=120°,
∴∠EAC=120°-90°=30,∠GFE=∠FAD=120°-90°=30°,
∵AD=AB=$\sqrt{2}$,
∴AC=$\sqrt{(\sqrt{2})^{2}+(\sqrt{2})^{2}}$=2,
當(dāng)點(diǎn)C第一次落在圓上時(shí),點(diǎn)C運(yùn)動(dòng)的路徑長為$\frac{30π×2}{180}$+$\frac{30π×\sqrt{2}}{180}$=$({\frac{1}{3}+\frac{{\sqrt{2}}}{6}})π$;
故答案為:$({\frac{1}{3}+\frac{{\sqrt{2}}}{6}})π$.
點(diǎn)評 本題考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì)、勾股定理的運(yùn)用以及弧長公式的運(yùn)用,題目的綜合性較強(qiáng),解題的關(guān)鍵是正確的求出旋轉(zhuǎn)角的度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com