如圖,在平面直角坐標系中,頂點為(3,4)的拋物線交 y軸與A點,交x軸與B、C兩點(點B在點C的左側(cè)),已知A點坐標為(0,-5).
(1)求此拋物線的解析式;
(2)過點B作線段AB的垂線交拋物線與點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸與⊙C的位置關系,并給出證明.
(3)在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形.若存在,求點P的坐標;若不存在,請說明理由.
解:(1)∵拋物線的頂點為(3,4),∴可設此拋物線的解析式為:。
∵此拋物線過點A(0,-5),∴,解得。
∴此拋物線的解析式為:,即。
(2)此時拋物線的對稱軸與⊙C相離。證明如下:
令,即,得x=1或x=5,
∴B(1,0),C(5,0)。
令x=1,得,∴A(0,-5)。
如圖,過點C作CE⊥BD于點E,作拋物線的對稱軸交x軸于點F,
∵AB⊥BD,∴∠ABO=900-∠ABO=∠CBE。
∵∠AOB=∠BEC=900,∴△AOB∽△BEC。
∴。
又∵OB=1,OA=5,∴根據(jù)勾股定理,得。
又∵BC=4,∴,即。
∵CF=2,∴,即。
∴拋物線的對稱軸與⊙C相離。
(3)存在。
假設存在滿足條件的點,
∵點在拋物線上,∴。
又,
,
。
①當∠A=900時,在中,由勾股定理,得 ,
∴,整理,得。
∴,解得或,∴或。
∴點P為(7,-12)或(0,-5)(舍去)。
②當∠C=900時,在中,由勾股定理,得,
∴,整理,得。
∴,解得或,∴或。
∴點P為(2,3)或(5,0)(舍去)。
綜上所述,滿足條件的點P的坐標為(7,-12)或(2,3)。
【解析】(1)由于已知拋物線的頂點為(3,4),故應用待定系數(shù)法,設頂點式求解。
(2)過點C作CE⊥BD于點E,應用△AOB∽△BEC求得CE的長,與點C到拋物線的對稱軸的距離比較即可。
(3)用點P的橫坐標表示三邊的長,分∠A=900和∠C=900兩種情況討論即可。
科目:初中數(shù)學 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com