【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖像與軸交于兩點,與軸交于點,其頂點為,連接,過點軸的垂線.

1)求點的坐標;

2)直線上是否存在點,使的面積等于的面積的3倍?若存在,求出點的坐標;若不存在,請說明理由.

【答案】1;(2.

【解析】

1)利用配方法可求出頂點坐標,令,可得,即;

2)求出直線的解析式為,設直線軸于,則,,設直線軸于,當時,的面積等于的面積的3倍,分兩種情形分別求解即可解決問題.

解:(1,

頂點

得到

;

2)令,,解得

,

設直線的解析式為,則有

解得

直線的解析式,

設直線軸于,則,

設直線軸于,當時,的面積等于的面積的3倍,

,

時,直線垂直于軸,

時,易得直線的解析式為,

y=5時,x=-12.

綜上所述,滿足條件的點,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】“我要上春晚”進入決賽階段,最終將有甲、乙、丙、丁4名選手進行決賽的終極較量,決賽分3期進行,每期比賽淘汰1名選手,最終留下的歌手即為冠軍.假設每位選手被淘汰的可能性都相等.

1)甲在第1期比賽中被淘汰的概率為    

2)用樹狀圖法或表格法求甲在第2期被淘汰的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組根據(jù)學習函數(shù)的經(jīng)驗,對分段函數(shù)y的圖象與性質(zhì)進了探究,請補充完整以下的探索過程.

x

2

1

0

1

2

3

4

y

3

0

1

0

1

0

3

1)填空:a   b   

2提上述表格補全函數(shù)圖象;該函數(shù)圖象是關于   對稱的   (橫線上填軸對稱或中心對稱)圖形.

3)若直線yx+t與該函數(shù)圖象有三個交點,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A,B的坐標分別為(1,0),(2,0).若二次函數(shù)y=x2+(a﹣3)x+3的圖象與線段AB只有一個交點,則a的取值范圍是_______________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九(1)班數(shù)學興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x1≤x≤90)天的售價與銷售量的相關信息如下表:

時間x(天)

1≤x50

50≤x≤90

售價(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進價為每件30元,設銷售該商品的每天利潤為y[

1)求出yx的函數(shù)關系式;

2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一房間內(nèi)A、B兩點之間設有探測報警裝置,小車(不計大小)在房間內(nèi)運動,當小車從AB之間經(jīng)過時,將觸發(fā)報警.現(xiàn)將AB兩點放置于平面直角坐標系xOy中(如圖),已知點A,B的坐標分別為(0,4),(4,4),小車沿拋物線yax22ax3aa0)運動.若小車在運動過程中只觸發(fā)一次報警裝置,則a的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點Ax軸的負半軸上,點B的坐標為(﹣2,﹣4),拋物線yax2+bx的對稱軸為x=﹣5,該拋物線經(jīng)過點A、B,點EAB與對稱軸x=﹣5的交點.

1)如圖1,點P為直線AB下方的拋物線上的任意一點,在對稱軸x=﹣5上有一動點M,當△ABP的面積最大時,求|PMOM|的最大值以及點P的坐標.

2)如圖2,把△ABO沿射線BA方向平移,得到△CDF,其中點C、DF分別是點A、B、O的對應點,且點F與點O不重合,平移過程中,是否存在這樣的點F,使得以點A、E、F為頂點的三角形為等腰三角形?若存在,直接寫出點F的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,其中圖3個小菱形,圖7個小菱形,圖13個小菱形……請根據(jù)排列規(guī)律完成下列問題:

1)請寫出圖中小菱形的個數(shù);

2)根據(jù)表中規(guī)律猜想,圖中小菱形的個數(shù)的關系式(不用說理);

3)是否存在一個圖形恰好由91個菱形組成?若存在,求出圖形的序號;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(9)已知:ABCD的兩邊AB,AD的長是關于x的方程的兩個實數(shù)根.

1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

2)若AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

同步練習冊答案