分析 根據(jù)x,y的值,先求得x+y,xy,再把$\frac{y}{x}$+$\frac{x}{y}$化簡,即可得出答案.
解答 解:∵x=$\frac{\sqrt{6}+\sqrt{3}}{2}$,y=$\frac{\sqrt{6}-\sqrt{3}}{2}$,
∴x+y=$\sqrt{6}$,xy=$\frac{(\sqrt{6})^{2}-(\sqrt{3})^{2}}{4}$=$\frac{3}{4}$,
∴$\frac{y}{x}$+$\frac{x}{y}$=$\frac{{x}^{2}+{y}^{2}}{xy}$=$\frac{(x+y)^{2}-2xy}{xy}$=$\frac{6-2×\frac{3}{4}}{\frac{3}{4}}$=$\frac{9}{2}$×$\frac{4}{3}$=6.
點(diǎn)評 本題考查了二次根式的化簡求值,求得x+y,xy是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -3<a<-2 | B. | -3≤a<-2 | C. | -3<a≤-2 | D. | -3≤a≤-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 5個 | B. | 4個 | C. | 3個 | D. | 2個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{6}$-6 | B. | 3$\sqrt{6}$+6 | C. | -3$\sqrt{6}$+6 | D. | -3$\sqrt{6}$-6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com