【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交于點A(﹣1,0),與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點B( ,n).連接OB,若S△AOB=1.
(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)直接寫出不等式組 的解集.
【答案】
(1)解:由題意得OA=1,
∵S△AOB=1,
∴ ×1×n=1,
解得n=2,
∴B點坐標(biāo)為( ,2),代入y= 得m=1,
∴反比例函數(shù)關(guān)系式為y= ;
∵一次函數(shù)的圖象過點A、B,
把A、B點坐標(biāo)代入y=kx+b得: ,
解得: ,
∴一次函數(shù)的關(guān)系式為y= x+
(2)解:由圖象可知,不等式組的解集為:0<x< .
【解析】(1)由S△AOB=1與OA=1,即可求得A與B的坐標(biāo),則可利用待定系數(shù)法即可求得反比例函數(shù)與一次函數(shù)的關(guān)系式;(2)根據(jù)圖象可得在第一象限且反比例函數(shù)的函數(shù)值大于一次函數(shù)的函數(shù)值部分.
【考點精析】本題主要考查了三角形的面積的相關(guān)知識點,需要掌握三角形的面積=1/2×底×高才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過A(2,0),B(0,﹣1)和C(4,5)三點.
(1)求二次函數(shù)的解析式;
(2)設(shè)二次函數(shù)的圖象與x軸的另一個交點為D,求點D的坐標(biāo);
(3)在同一坐標(biāo)系中畫出直線y=x+1,并寫出當(dāng)x在什么范圍內(nèi)時,一次函數(shù)的值大于二次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點D位于△ABC邊AC上,已知AB是AD與AC的比例中項.
(1)求證:∠ACB=∠ABD;
(2)現(xiàn)有點E、F分別在邊AB、BC上如圖2,滿足∠EDF=∠A+∠C,當(dāng)AB=4,BC=5,CA=6時,求證:DE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列正方形網(wǎng)格的每個小正方形的邊長均為1,⊙O的半徑為n≥8 .規(guī)定:頂點既在圓上又是正方形格點的直角三角形稱為“圓格三角形”,請按下列要求各畫一個“圓格三角形”,并用陰影表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用若干個全等的正五邊形可以拼成一個環(huán)狀,圖中所示的是前3個正五邊形的拼接情況,要完全拼成一個圓環(huán)還需要的正五邊形個數(shù)是( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c圖象如圖所示,則一次函數(shù)y=﹣bx﹣4ac+b2與反比例函數(shù)y= 在同一坐標(biāo)系內(nèi)的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+bx+c的圖象經(jīng)過點A(m,0)、B(0,n),其中m、n是方程x2﹣6x+5=0的兩個實數(shù)根,且m<n.
(1)求拋物線的解析式;
(2)設(shè)(1)中的拋物線與x軸的另一個交點為C,拋物線的頂點為D,求C、D點的坐標(biāo)和△BCD的面積;
(3)P是線段OC上一點,過點P作PH⊥x軸,交拋物線于點H,若直線BC把△PCH分成面積相等的兩部分,求P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=x-1與反比例函數(shù)y= 的圖像交于點A(2,1),B(-1,-2),則使y1>y2的x的取值范圍是( ).
A.x>2
B.x>2或-1<x<0
C.-1<x<2
D.x>2或x<-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,點M從點C出發(fā)沿CB方向以1cm/s的速度勻速運動,到達點B停止運動,在點M的運動過程中,過點M作直線MN交AC于點N,且保持∠NMC=45°,再過點N作AC的垂線交AB于點F,連接MF,將△MNF關(guān)于直線NF對稱后得到△ENF,已知AC=8cm,BC=4cm,設(shè)點M運動時間為t(s),△ENF與△ANF重疊部分的面積為y(cm2).
(1)在點M的運動過程中,能否使得四邊形MNEF為正方形?如果能,求出相應(yīng)的t值;如果不能,說明理由;
(2)求y關(guān)于t的函數(shù)解析式及相應(yīng)t的取值范圍;
(3)當(dāng)y取最大值時,求sin∠NEF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com