【題目】某小龍蝦養(yǎng)殖大戶為了更好地發(fā)揮技術優(yōu)勢,一次性收購了20000kg小龍蝦,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).

1)設每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求ab的值;

2)設這批小龍蝦放養(yǎng)t天后的質量為mkg),銷售單價為y/kg.根據(jù)以往經(jīng)驗可知:mt的函數(shù)關系為yt的函數(shù)關系如圖所示.

①分別求出當0t5050t100時,yt的函數(shù)關系式;

②設將這批小龍蝦放養(yǎng)t天后一次性出售所得利潤為W元,求當t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)

【答案】1a的值為0.04,b的值為30;(2)①當0t50時,,當50t100時,;(3)放養(yǎng)55天時,W最大,最大值為180250元.

【解析】

1)由放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元可得答案;
2)①分0≤t≤50、50<t≤100兩種情況,結合函數(shù)圖象利用待定系數(shù)法求解可得;
②就以上兩種情況,根據(jù)利潤=銷售總額-總成本列出函數(shù)解析式,依據(jù)一次函數(shù)性質和二次函數(shù)性質求得最大值即可得.

1)由題意,得:,解得:

答:a的值為0.04,b的值為30

2)①當0t50時,設yt的函數(shù)解析式為,將(015)、(50,25)代入,得:,解得:,∴yt的函數(shù)解析式為

50t100時,設yt的函數(shù)解析式為,將點(50,25)、(100,20)代入,得:,解得:,∴yt的函數(shù)解析式為

②由題意,當0t50時,W=20000t+15)﹣(400t+300000=3600t

36000,∴當t=50時,W最大值=180000(元);

50t100時,W=100t+15000)(﹣t+30)﹣(400t+300000

=10t2+1100t+150000=10t552+180250

∵﹣100,∴當t=55時,W最大值=180250(元).

綜上所述:放養(yǎng)55天時,W最大,最大值為180250元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程 kx2+(2k1)xk20

1)若該方程有兩個不相等的實數(shù)根,求k的取值范圍;

2)若該方程的兩根x1、x2滿足=-3,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.

(1)在圖1中證明CE=CF;

(2)若∠ABC=90°,GEF的中點(如圖2),直接寫出∠BDG的度數(shù);

(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D是等邊三角形ABC的邊BC上一點,以AD為邊作等邊ADE,連接CE.

1)求證:

2)若∠BAD=20°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠ABC=45°AB≠BC,BEAC于點EADBC于點D
1)如圖1,作∠ADB的角平分線DFBE于點F,連接AF.求證:∠FAB=FBA;
2)如圖2,連接DE,點G與點D關于直線AC對稱,連接DGEG
①依據(jù)題意補全圖形;
②用等式表示線段AEBE、DG之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系內,以原點O為圓心,1為半徑作圓,點P在直線上運動,過點P作該圓的一條切線,切點為A,則PA的最小值為  

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙OAB于點F,連接DB交⊙O于點H,EBC上的一點,且BEBF,連接DE

1)求證:DE是⊙O的切線.

2)若BF2,BD2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次籃球比賽中,如圖隊員甲正在投籃.已知球出手時離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時達到最大高度4 m,設籃球運行軌跡為拋物線,籃圈距地面3 m.

(1)建立如圖所示的平面直角坐標系,問此球能否準確投中?

(2)此時,對方隊員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于拋物線,下列說法中錯誤的是(

A.y的最小值為1

B.圖象頂點坐標為(2,1),對稱軸為直線x=2

C.x2時,y的值隨x值的增大而增大,當x2時,y的值隨x值的增大而減小

D.它的圖象可以由的圖象向右平移2個單位長度,再向上平移1個單位長度得到

查看答案和解析>>

同步練習冊答案