(2010•成都)已知:在菱形ABCD中,O是對(duì)角線BD上的一動(dòng)點(diǎn).
(1)如圖甲,P為線段BC上一點(diǎn),連接PO并延長(zhǎng)交AD于點(diǎn)Q,當(dāng)O是BD的中點(diǎn)時(shí),求證:OP=OQ;
(2)如圖乙,連接AO并延長(zhǎng),與DC交于點(diǎn)R,與BC的延長(zhǎng)線交于點(diǎn)S.若AD=4,∠DCB=60°,BS=10,求AS和OR的長(zhǎng).

【答案】分析:(1)求簡(jiǎn)單的線段相等,可證線段所在的三角形全等,即證△ODQ≌△OBP.
(2)首先求AS的長(zhǎng),要通過(guò)構(gòu)建直角三角形求解;過(guò)A作BC的垂線,設(shè)垂足為T(mén),在Rt△ABT中,易證得∠ABT=∠DCB=60°,又已知了斜邊AB的長(zhǎng),通過(guò)解直角三角形可求出AT、BT的長(zhǎng);進(jìn)而可在Rt△ATS中,由勾股定理求出斜邊AS的值;由于四邊形ABCD是菱形,則AD∥BC,易證得△ADO∽△SBO,已知了AD、BS的長(zhǎng),根據(jù)相似三角形的對(duì)應(yīng)邊成比例線段可得出OA、OS的比例關(guān)系式,即可求出OA、OS的長(zhǎng);同理,可通過(guò)相似三角形△ADR和△SCR求得AR、RS的值;由OR=OS-RS即可求出OR的長(zhǎng).
解答:(1)證明:∵四邊形ABCD為菱形,
∴AD∥BC.
∴∠OBP=∠ODQ
∵O是BD的中點(diǎn),
∴OB=OD
在△BOP和△DOQ中,
∵∠OBP=∠ODQ,OB=OD,∠BOP=∠DOQ
∴△BOP≌△DOQ(ASA)
∴OP=OQ.

(2)解:如圖,過(guò)A作AT⊥BC,與CB的延長(zhǎng)線交于T.
∵ABCD是菱形,∠DCB=60°
∴AB=AD=4,∠ABT=60°
∴在Rt△ATB中,AT=ABsin60°=
TB=ABcos60°=2
∵BS=10,
∴TS=TB+BS=12,
在Rt△ATS中,
∴AS=
∵AD∥BS,
∴△AOD∽△SOB.
,


∵AS=,
∴OS=AS=
同理可得△ARD∽△SRC.

,
,

∴OR=OS-RS=.(12分)
點(diǎn)評(píng):此題考查了菱形的性質(zhì)、全等三角形及相似三角形的判定和性質(zhì);(2)中能夠正確的構(gòu)建出直角三角形,求出AS的長(zhǎng)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2010•成都)已知:如圖,△ABC內(nèi)接于⊙O,AB為直徑,弦CE⊥AB于F,C是的中點(diǎn),連接BD并延長(zhǎng)交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CE、BC于點(diǎn)P、Q.
(1)求證:P是△ACQ的外心;
(2)若,求CQ的長(zhǎng);
(3)求證:(FP+PQ)2=FP•FG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(08)(解析版) 題型:解答題

(2010•成都)已知:在菱形ABCD中,O是對(duì)角線BD上的一動(dòng)點(diǎn).
(1)如圖甲,P為線段BC上一點(diǎn),連接PO并延長(zhǎng)交AD于點(diǎn)Q,當(dāng)O是BD的中點(diǎn)時(shí),求證:OP=OQ;
(2)如圖乙,連接AO并延長(zhǎng),與DC交于點(diǎn)R,與BC的延長(zhǎng)線交于點(diǎn)S.若AD=4,∠DCB=60°,BS=10,求AS和OR的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(17)(解析版) 題型:解答題

(2010•成都)已知:如圖,AB與⊙O相切于點(diǎn)C,OA=OB,⊙O的直徑為4,AB=8.
(1)求OB的長(zhǎng);
(2)求sinA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•成都)已知:如圖,△ABC內(nèi)接于⊙O,AB為直徑,弦CE⊥AB于F,C是的中點(diǎn),連接BD并延長(zhǎng)交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CE、BC于點(diǎn)P、Q.
(1)求證:P是△ACQ的外心;
(2)若,求CQ的長(zhǎng);
(3)求證:(FP+PQ)2=FP•FG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•成都)已知:在菱形ABCD中,O是對(duì)角線BD上的一動(dòng)點(diǎn).
(1)如圖甲,P為線段BC上一點(diǎn),連接PO并延長(zhǎng)交AD于點(diǎn)Q,當(dāng)O是BD的中點(diǎn)時(shí),求證:OP=OQ;
(2)如圖乙,連接AO并延長(zhǎng),與DC交于點(diǎn)R,與BC的延長(zhǎng)線交于點(diǎn)S.若AD=4,∠DCB=60°,BS=10,求AS和OR的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案