如圖,在直角坐標(biāo)系xOy中,A、B是x軸上的兩點(diǎn),以AB為直徑的圓交y軸于C,設(shè)過A、B、C三點(diǎn)的拋物線的解析式為y=x2-mx+n.方程x2-mx+n=0的兩根倒數(shù)和為-4.
(1)求n的值;
(2)求此拋物線的解析式;
(3)設(shè)平行于x軸的直線交此拋物線于E、F兩點(diǎn),問是否存在此線段EF為直徑的圓恰好與x軸相切?若存在,求出此圓的半徑;若不存在,說明理由.

解:(1)由題意,設(shè)A(x1,0),B(x2,0),C(0,n)
∵OA=-x1,OB=x2,又CO⊥AB,
∴CO2=AO•OB,
即n2=-x1x2
又∵x1,x2是方程x2-mx+n=0的兩根,
∴x1+x2=n,
∴n2=-n,
∴n1=-1,n2=0(舍去),
∴n=-1.

(2)∵x1,x2是方程x2-mx+n=0的兩根,
∴x1+x2=m.
又∵n=-1,
∴x1x2=-1,
+===-4,
∴m=4,
∴所求拋物線的關(guān)系式為y=x2-4x-1.
(3)存在,設(shè)滿足條件的圓的半徑為|r|,
∵y=x2-4x-1.
=(x-2)2-5,
拋物線對(duì)稱軸為x=2,
根據(jù)圓和拋物線的對(duì)稱性可知:圓心在拋物線的對(duì)稱軸上,
∴E的坐標(biāo)為(2+|r|,r),
∵點(diǎn)E在拋物線上,
∴r=(2+|r|-2)2-5,
即:r2-r-5=0,
解得:r=,
∴存在此線段EF為直徑的圓恰好與x軸相切,此圓的半徑為
分析:(1)由于AB是圓的直徑,根據(jù)相交弦定理的推論可得OC2=OA•OB,若設(shè)A(x1,0),B(x2,0),那么n2=-x1x2,根據(jù)根與系數(shù)的關(guān)系知x1x2=n,聯(lián)立兩式即可求得n的值.
(2)根據(jù)韋達(dá)定理可求得方程的兩根之和與兩根之積,即可表示出它們的倒數(shù)和,已知了倒數(shù)和為-4,即可求得m的值,由此確定拋物線的解析式.
(3)可假設(shè)存在這樣的點(diǎn)E、F,設(shè)以線段EF為直徑的圓的半徑為|r|,那么可用半徑|r|表示出E,F(xiàn)兩點(diǎn)的坐標(biāo),然后根據(jù)E,F(xiàn)在拋物線上,將E,F(xiàn)的坐標(biāo)代入拋物線的解析式中,可得出關(guān)于|r|的方程,如果方程無解則說明不存在這樣的E,F(xiàn)點(diǎn),如果方程有解,可用得出的r的值求出E,F(xiàn)兩點(diǎn)的坐標(biāo).
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、根與系數(shù)的關(guān)系、拋物線與圓的對(duì)稱性等知識(shí),綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,⊙M與y軸相切于點(diǎn)C,與x軸交于A(x1,0),B(x2,0)兩點(diǎn),其中x1,x2是方程x2-10x+16=0的兩個(gè)根,且x1<x2,連接MC,過A、B、C三點(diǎn)的拋物線的頂點(diǎn)為N.
(1)求過A、B、C三點(diǎn)的拋物線的解析式;
(2)判斷直線NA與⊙M的位置關(guān)系,并說明理由;
(3)一動(dòng)點(diǎn)P從點(diǎn)C出發(fā),以每秒1個(gè)單位長的速度沿CM向點(diǎn)M運(yùn)動(dòng),同時(shí),一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿射線BA以每秒4個(gè)單位長度的速度運(yùn)動(dòng),當(dāng)P運(yùn)動(dòng)到M點(diǎn)時(shí),兩動(dòng)點(diǎn)同時(shí)停止運(yùn)動(dòng),當(dāng)時(shí)間t為何值時(shí),以Q、O、C為頂點(diǎn)的三角形與△PCO相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:在直角坐標(biāo)系中放入一邊長OC為6的矩形紙片ABCO,將紙翻折后,使點(diǎn)B恰好落在x軸上,記為B',折痕為CE,已知tan∠OB′C=
3
4

(1)求出B′點(diǎn)的坐標(biāo);
(2)求折痕CE所在直線的解析式;
(3)作B′G∥AB交CE于G,已知拋物線y=
1
8
x2-
14
3
通過G點(diǎn),以O(shè)為圓心OG的長為精英家教網(wǎng)半徑的圓與拋物線是否還有除G點(diǎn)以外的交點(diǎn)?若有,請(qǐng)找出這個(gè)交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已如:如圖,在直角坐標(biāo)系中,以y軸上的點(diǎn)C為圓心,2為半徑的圓與x軸相切于原點(diǎn)O,AB為⊙C的直徑,PA切⊙O于點(diǎn)A,交x軸的負(fù)半軸于點(diǎn)P,連接PC交OA于點(diǎn)D.
(1)求證:PC⊥OA;
(2)若點(diǎn)P在x軸的負(fù)半軸上運(yùn)動(dòng),原題的其他條件不變,設(shè)點(diǎn)P的坐標(biāo)為(x,0),四邊形
POCA的面積為S,求S與點(diǎn)P的橫坐標(biāo)x之間的函數(shù)關(guān)系式;
(3)在(2)的情況下,分析并判斷是否存在這樣的一點(diǎn)P,使S四邊形POCA=S△AOB,若存在,直接寫出點(diǎn)P的坐標(biāo)(不寫過程);若不存在,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:在直角坐標(biāo)系中描出A(-4,-4),B(1,-4),C(2,-1),D(-3,-1)四個(gè)點(diǎn).
(1)順次連接A,B,C,D四個(gè)點(diǎn)組成的圖形是什么圖形?
(2)畫出(1)中圖形分別向上5個(gè)單位向右3個(gè)單位后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,A的坐標(biāo)為(a,0),D的坐標(biāo)為(0,b),且a、b滿足
a+2
+(b-4)2=0

(1)求A、D兩點(diǎn)的坐標(biāo);
(2)以A為直角頂點(diǎn)作等腰直角三角形△ADB,直接寫出B的坐標(biāo);
(3)在(2)的條件下,當(dāng)點(diǎn)B在第四象限時(shí),將△ADB沿直線BD翻折得到△A′DB,點(diǎn)P為線段BD上一動(dòng)點(diǎn)(不與B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,請(qǐng)?zhí)骄浚篜D、PN、BN之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案