在Rt△ABO中,∠ABO=30°,BO=4,分別以O(shè)A、OB邊所在的直線建立平面直角坐標(biāo)系,D為x軸正半軸上一點(diǎn),以O(shè)D為一邊在第一象限內(nèi)作等邊△ODE.
(Ⅰ)如圖①, 當(dāng)E點(diǎn)恰好落在線段AB上,求點(diǎn)E的坐標(biāo);
    
(Ⅱ)在(Ⅰ)問的條件下,將△ODE在線段OB上向右平移(如圖②),圖中是否存在一條與線段始終相等的線段?如果存在,請(qǐng)指出這條線段,并加以證明;如果不存在,請(qǐng)說明理由.
(Ⅲ)若點(diǎn)D從原點(diǎn)出發(fā)沿x軸的正方向移動(dòng),設(shè)點(diǎn)D到原點(diǎn)的距離為x,△ODE與△AOB重疊部分面積為y,請(qǐng)直接寫出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(Ⅰ) E(1,).      
(Ⅱ) 將△ODE在線段OB上向右平移時(shí),始終有線段EF=.  
由(Ⅰ)知=2,得+ BD=2,
∵∠=60°=2∠B=∠B+∠BFD,∴∠BFD=∠B,∴DF = BD.
又∵DF+ EF=2,∴EF=.  
(Ⅲ)①如圖a,當(dāng)0≤x≤2時(shí),y==
②如圖b,當(dāng)2<x<4時(shí),y==+2-2.
③如圖c,當(dāng)x≥4時(shí),y==2.  
 

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•峨眉山市二模)如圖,在Rt△ABO中,OB=8,tan∠OBA=
34
.若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)C在x軸負(fù)半軸上,且OB=4OC.若拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.
(1)求該拋物線的解析式;
(2)設(shè)該二次函數(shù)的圖象的頂點(diǎn)為P,求四邊形OAPB的面積;
(3)有兩動(dòng)點(diǎn)M,N同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)M以每秒2個(gè)單位長(zhǎng)度的速度沿折線OAB按O→A→B的路線運(yùn)動(dòng),點(diǎn)N以每秒4個(gè)單位長(zhǎng)度的速度沿折線按O→B→A的路線運(yùn)動(dòng),當(dāng)M、N兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng).設(shè)M、N同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OMN的面積為S.
①請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
②判斷在①的過程中,t為何值時(shí),△OMN的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•杭州)如圖,在Rt△ABO中,斜邊AB=1.若OC∥BA,∠AOC=36°,則( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在10×10的網(wǎng)格紙上建立平面直角坐標(biāo)系如圖所示,在Rt△ABO中,∠OAB=90°,且點(diǎn)B的坐標(biāo)為(3,4).
(1)畫出△0AB向左平移3個(gè)單位后的△01A1B1,寫出點(diǎn)B1的坐標(biāo);
(2)畫出△0AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的△0A2B2,并求點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2時(shí),點(diǎn)B經(jīng)過的路線長(zhǎng)(π取3.14,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在10×10的網(wǎng)格紙上建立平面直角坐標(biāo)系如圖所示,在Rt△ABO中,∠OAB=90°,且點(diǎn)B的坐標(biāo)為(3,4).
(1)分別畫出△OAB關(guān)于y軸對(duì)稱的△OA1B1與關(guān)于x軸對(duì)稱的△OA2B2,并分別寫出點(diǎn)B1,B2的坐標(biāo).
(2)觀察△OA1B1與△OA2B2,怎樣由△OA1B1得到△OA2B2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABO中,∠OAB=90°,∠B=45°,OA=6,將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△OA1B1,則線段OA1的長(zhǎng)與∠AOB1的度數(shù)分別為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案