順次連接四邊形ABCD各邊中點(diǎn)得四邊形EFGH,要使四邊形EFGH是矩形,可以添加的一個(gè)條件是( )
A.AD∥BC
B.AC=BD
C.AC⊥BD
D.AD=AB
【答案】分析:先由三角形中位線(xiàn)的性質(zhì)證出四邊形EFGH是平行四邊形,要使?EFGH為矩形,根據(jù)矩形的定義:有一個(gè)角為直角的平行四邊形是矩形,可知需要?EFGH的一個(gè)角為90度,由此推出AC⊥BD.
解答:解:順次連接四邊形ABCD各邊中點(diǎn)得四邊形EFGH,要使四邊形EFGH是矩形,可以添加的一個(gè)條件是AC⊥BD.理由如下:
如圖,連接AC、BD.
∵E、F、G、H分別為四邊形ABCD各邊的中點(diǎn),
∴EF∥AC,HG∥AC,EH∥BD,F(xiàn)G∥BD,
∴EF∥HG,EH∥FG,
∴四邊形EFGH是平行四邊形.
∵AC⊥BD,EF∥AC,EH∥BD,
∴EF⊥EH,即∠FEH=90°,
∴?EFGH為矩形.
故選C.
點(diǎn)評(píng):本題主要考查三角形的中位線(xiàn)性質(zhì)定理和矩形的判定,熟練掌握定理和性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,若已知△ABC中,D、E分別為AB、AC的中點(diǎn),則可得DE∥BC,且DE=
12
BC.根據(jù)上面的結(jié)論:
(1)你能否說(shuō)出順次連接任意四邊形各邊中點(diǎn),可得到一個(gè)什么特殊四邊形并說(shuō)明理由;
(2)如果將(1)中的“任意四邊形”改為條件是“平行四邊形”或“菱形”或“矩形”或“等腰梯形”,那么它們的結(jié)論又分別怎樣呢?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,若順次連接四邊形ABCD各邊中點(diǎn)所得四邊形EFGH是菱形,則稱(chēng)原四邊形ABCD為“中母菱形”.定義:若四邊形的對(duì)角線(xiàn)相等,那么這個(gè)四邊形是中母菱形.
(1)請(qǐng)寫(xiě)一個(gè)你學(xué)過(guò)的特殊四邊形中是中母菱形的圖形的名稱(chēng).
(2)如圖有等邊三角形ABC中,D、E分別是AB、AC的中點(diǎn),連接DE,猜想圖中哪個(gè)四邊形是中母菱形,并加以證明.
(3)在等邊三角形ABC中,若D、E不是AB、AC的中點(diǎn),且BD=AE,探究滿(mǎn)足上述條件的圖形中是否在中母菱形,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,△A′B′C′與△ABC是中心對(duì)稱(chēng)圖形.
(1)在圖中標(biāo)出△A′B′C′與△ABC的對(duì)稱(chēng)中心點(diǎn)O;
(2)如果將△ABC向右平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,請(qǐng)畫(huà)出平移后的△A1B1C1;
(3)畫(huà)出△A1B1C1繞點(diǎn)O旋轉(zhuǎn)180°后得到的△A2B2C2;
(4)順次連接C、C1、C′、C2,所得到的圖形是軸對(duì)稱(chēng)圖形嗎?
(5)求出四邊形CC1C′C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,若順次連接四邊形ABCD各邊中點(diǎn)所得四邊形EFGH是菱形,則稱(chēng)原四邊形ABCD為“中母菱形”.定義:若四邊形的對(duì)角線(xiàn)相等,那么這個(gè)四邊形是中母菱形.
(1)請(qǐng)寫(xiě)一個(gè)你學(xué)過(guò)的特殊四邊形中是中母菱形的圖形的名稱(chēng).
(2)如圖有等邊三角形ABC中,D、E分別是AB、AC的中點(diǎn),連接DE,猜想圖中哪個(gè)四邊形是中母菱形,并加以證明.
(3)在等邊三角形ABC中,若D、E不是AB、AC的中點(diǎn),且BD=AE,探究滿(mǎn)足上述條件的圖形中是否在中母菱形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年內(nèi)蒙古鄂爾多斯市東勝實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖1,若順次連接四邊形ABCD各邊中點(diǎn)所得四邊形EFGH是菱形,則稱(chēng)原四邊形ABCD為“中母菱形”.定義:若四邊形的對(duì)角線(xiàn)相等,那么這個(gè)四邊形是中母菱形.
(1)請(qǐng)寫(xiě)一個(gè)你學(xué)過(guò)的特殊四邊形中是中母菱形的圖形的名稱(chēng).
(2)如圖有等邊三角形ABC中,D、E分別是AB、AC的中點(diǎn),連接DE,猜想圖中哪個(gè)四邊形是中母菱形,并加以證明.
(3)在等邊三角形ABC中,若D、E不是AB、AC的中點(diǎn),且BD=AE,探究滿(mǎn)足上述條件的圖形中是否在中母菱形,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案