【題目】已知非等腰三角形的兩邊長分別是2 cm9 cm,如果第三邊的長為整數(shù),那么第三邊的長為(

A. 8 cm10 cm B. 8 cm9 cm C. 8 cm D. 10 cm

【答案】A

【解析】

根據(jù)三角形的三邊關(guān)系求得第三邊的取值范圍,再根據(jù)第三邊為整數(shù)即可得出答案.

解:根據(jù)三角形的三邊關(guān)系,得
7cm<第三邊<11cm,
故第三邊為8,9,10,
又∵三角形為非等腰三角形,
∴第三邊≠9.
故選:A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解

1x2-9y2

22x2y-8xy+8y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a<b,則下列各式中正確的是(

A.a<-bB.a-3<a-8C.a2<b2D.-3a>-3b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題背景

如圖①,BC是⊙O的直徑,點A在⊙O上,AB=AC,P為BmC上一動點(不與B,C重合),求證: PA=PB+PC.

小明同學(xué)觀察到圖中自點A出發(fā)有三條線段AB,AP,AC,且AB=AC,這就為旋轉(zhuǎn)作了鋪墊.于是,小明同學(xué)有如下思考過程:

第一步:將△PAC繞著點A順時針旋轉(zhuǎn)90°至△QAB(如圖①);

第二步:證明Q,B,P三點共線,進而原題得證.

請你根據(jù)小明同學(xué)的思考過程完成證明過程.

(2)類比遷移

如圖②,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內(nèi)一點,AB=AC,AB⊥AC,垂足為A,求OC的最小值.

(3)拓展延伸

如圖③,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內(nèi)一點,AB=AC,AB⊥AC,垂足為A,則OC的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P為∠AOB內(nèi)一點,分別作出點P關(guān)于OA、OB的對稱點P1、P2 , 連接P1P2交OA于M,交OB于N,若P1P2=6,則△PMN的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將點M(-5,y)向下平移6個單位長度后所得到的點與點M關(guān)于x軸對稱,y的值是(

A. -6 B. 6 C. -3 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)如圖1,為美化校園環(huán)境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為米.

(1)花圃的面積為 (用含的式子表示);

(2)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬;

(3)已知某園林公司修建通道、花圃的造價(元)、(元)與修建面積 之間的函數(shù)關(guān)系如圖2所示,如果學(xué)校決定由該公司承建此項目,并要求修建的通道的寬度不少于2米且不超過10米,那么通道寬為多少時,修建的通道和花圃的總造價為105920元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn):

)如圖①,中,,,,點邊上任意一點,則的最小值為__________

)如圖②,矩形中,,,點、點分別在、上,求的最小值.

)如圖③,矩形中,,點邊上一點,且,點邊上的任意一點,把沿翻折,點的對應(yīng)點為點,連接,四邊形的面積是否存在最小值,若存在,求這個最小值及此時的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x=3、y=1時,代數(shù)式(x+y)(xy)+y2的值是________.

查看答案和解析>>

同步練習冊答案