【題目】解不等式組 ,把解表示在數(shù)軸上,并寫出該不等式組的非負(fù)整數(shù)解.

【答案】解:解不等式(1),得

解不等式(2),得

∴不等式組的解集為:
在數(shù)軸上表示不等式(1)、(2)的解集為:

非負(fù)整數(shù)解:


【解析】解不等式(1),得 x ≥ 1 ,解不等式(2),得 x < 3. 然后根據(jù)大小小大中間找得出不等式的解集,并把解集在數(shù)軸上表示出來,注意表示解集的時(shí)候,實(shí)心點(diǎn)與空心點(diǎn)的區(qū)別,最后再在解集的范圍內(nèi)寫出整數(shù)解。
【考點(diǎn)精析】利用一元一次不等式組的解法和一元一次不等式組的整數(shù)解對(duì)題目進(jìn)行判斷即可得到答案,需要熟知解法:①分別求出這個(gè)不等式組中各個(gè)不等式的解集;②利用數(shù)軸表示出各個(gè)不等式的解集;③找出公共部分;④用不等式表示出這個(gè)不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個(gè)不等式組無解 ( 此時(shí)也稱這個(gè)不等式組的解集為空集 );使不等式組中的每個(gè)不等式都成立的未知數(shù)的值叫不等式組的解,一個(gè)不等式組的所有的解組成的集合,叫這個(gè)不等式組的解集(簡稱不等式組的解).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六邊形內(nèi)角都相等,,則下列結(jié)論成立的個(gè)數(shù)

;;四邊形是平行四邊形;六邊形 即是中心對(duì)稱圖形,又是軸對(duì)稱圖形

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠B=C,與ABC全等的三角形有一個(gè)角是100°,那么ABC中與這個(gè)角對(duì)應(yīng)的角是( )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有一個(gè)內(nèi)角為90°,且對(duì)角線相等的四邊形稱為準(zhǔn)矩形.
(1)①如圖1,準(zhǔn)矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD=;
②如圖2,直角坐標(biāo)系中,A(0,3),B(5,0),若整點(diǎn)P使得四邊形AOBP是準(zhǔn)矩形,則點(diǎn)P的坐標(biāo)是;(整點(diǎn)指橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn))

(2)如圖2,正方形ABCD中,點(diǎn)E、F分別是邊AD、AB上的點(diǎn),且CF⊥BE,求證:四邊形BCEF是準(zhǔn)矩形;

(3)已知,準(zhǔn)矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當(dāng)△ADC為等腰三角形時(shí),請(qǐng)直接寫出這個(gè)準(zhǔn)矩形的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,城市在城市正東方向,現(xiàn)計(jì)劃在兩城市間修建一條高速鐵路(即線段),經(jīng)測量,森林保護(hù)區(qū)的中心在城市的北偏東方向上,在線段上距城市處測得在北偏東方向上,已知森林保護(hù)區(qū)是以點(diǎn)為圓心,為半徑的圓形區(qū)域,請(qǐng)問計(jì)劃修建的這條高速鐵路是否穿越保護(hù)區(qū),為什么?

(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是(
A.b3b3=2b3
B.(a+2)(a﹣2)=a2﹣4
C.(ab23=ab6
D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)P(2-mm+1)x軸上,則P點(diǎn)坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(x﹣3,2x+4)在x軸上,則點(diǎn)P的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的一邊 為平面鏡, ,在 上有一點(diǎn) ,從 點(diǎn)射出一束光線經(jīng) 上一點(diǎn) 反射,反射光線 恰好與 平行,則 的度數(shù)是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案