【題目】如圖,拋物線 與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,已知點(diǎn)B的坐標(biāo)為(3,0).
(1)求a的值和拋物線的頂點(diǎn)坐標(biāo);
(2)分別連接AC、BC.在x軸下方的拋物線上求一點(diǎn)M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),d=|AN﹣CN|.探究:是否存在一點(diǎn)N,使d的值最大?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo)和d的最大值;若不存在,請(qǐng)簡(jiǎn)單說(shuō)明理由.
【答案】
(1)
解:∵拋物線y=ax2﹣ x+2經(jīng)過(guò)點(diǎn)B(3,0),
∴9a﹣ ×3+2=0,
解得a=﹣ ,
∴y=﹣ x2﹣ x+2,
∵y=﹣ x2﹣ x+2=﹣ (x2+3x)+2=﹣ (x+ )2+ ,
∴頂點(diǎn)坐標(biāo)為(﹣ , )
(2)
解:∵拋物線y=﹣ x2﹣ x+2的對(duì)稱軸為直線x=﹣ ,
與x軸交于點(diǎn)A和點(diǎn)B,點(diǎn)B的坐標(biāo)為(3,0),
∴點(diǎn)A的坐標(biāo)為(﹣6,0).
又∵當(dāng)x=0時(shí),y=2,
∴C點(diǎn)坐標(biāo)為(0,2).
設(shè)直線AC的解析式為y=kx+b,
則 ,解得 ,
∴直線AC的解析式為y= x+2.
∵S△AMC=S△ABC,
∴點(diǎn)B與點(diǎn)M到AC的距離相等,
又∵點(diǎn)B與點(diǎn)M都在AC的下方,
∴BM∥AC,
設(shè)直線BM的解析式為y= x+n,
將點(diǎn)B(3,0)代入,得 ×3+n=0,
解得n=﹣1,
∴直線BM的解析式為y= x﹣1.
由 ,解得 , ,
∴M點(diǎn)的坐標(biāo)是(﹣9,﹣4)
(3)
解:在拋物線對(duì)稱軸上存在一點(diǎn)N,能夠使d=|AN﹣CN|的值最大.理由如下:
∵拋物線y=﹣ x2﹣ x+2與x軸交于點(diǎn)A和點(diǎn)B,
∴點(diǎn)A和點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱.
連接BC并延長(zhǎng),交直線x=﹣ 于點(diǎn)N,連接AN,則AN=BN,此時(shí)d=|AN﹣CN|=|BN﹣CN|=BC最大.
設(shè)直線BC的解析式為y=mx+t,將B(3,0),C(0,2)兩點(diǎn)的坐標(biāo)代入,
得 , ,
∴直線BC的解析式為y=﹣ x+2,
當(dāng)x=﹣ 時(shí),y=﹣ ×(﹣ )+2=3,
∴點(diǎn)N的坐標(biāo)為(﹣ ,3),d的最大值為BC= = .
【解析】(1)先把點(diǎn)B的坐標(biāo)代入y=ax2﹣ x+2,可求得a的值,再利用配方法將一般式化為頂點(diǎn)式,即可求得拋物線的頂點(diǎn)坐標(biāo);(2)先由拋物線的解析式y(tǒng)=﹣ x2﹣ x+2,求出與x軸的交點(diǎn)A的坐標(biāo),與y軸的交點(diǎn)C的坐標(biāo),再由△AMC與△ABC的面積相等,得出這兩個(gè)三角形AC邊上的高相等,又由點(diǎn)B與點(diǎn)M都在AC的下方,得出BM∥AC,則點(diǎn)M既在過(guò)B點(diǎn)與AC平行的直線上,又在拋物線y=﹣ x2﹣ x+2上,所以先運(yùn)用待定系數(shù)法求出直線AC的解析式為y= x+2,再設(shè)直線BM的解析式為y= x+n,將點(diǎn)B(3,0)代入,求出n的值,得到直線BM的解析式為y= x﹣1,然后解方程組 ,即可求出點(diǎn)M的坐標(biāo);(3)連接BC并延長(zhǎng),交拋物線的對(duì)稱軸x=﹣ 于點(diǎn)N,連接AN,根據(jù)軸對(duì)稱的性質(zhì)得出AN=BN,并且根據(jù)三角形三邊關(guān)系定理得出此時(shí)d=|AN﹣CN|=|BN﹣CN|=BC最大.運(yùn)用待定系數(shù)法求出直線BC的解析式,再將x=﹣ 代入,求出y的值,得到點(diǎn)N的坐標(biāo),然后利用勾股定理求出d的最大值BC即可.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)絡(luò)購(gòu)物越來(lái)越方便快捷,遠(yuǎn)方的朋友通過(guò)網(wǎng)購(gòu)就可以迅速品嘗到茂名的新鮮荔枝,同時(shí)也增加了種植戶的收入,種植戶老張去年將全部荔枝按批發(fā)價(jià)賣給水果商,收入6萬(wàn)元,今年的荔枝產(chǎn)量比去年增加2000千克,計(jì)劃全部采用互聯(lián)網(wǎng)銷售,網(wǎng)上銷售比去年的批發(fā)價(jià)高50%,若按此價(jià)格售完,今年的收入將達(dá)到10.8萬(wàn)元.
(1)去年的批發(fā)價(jià)和今年網(wǎng)上售價(jià)分別是多少?
(2)若今年老張按(1)中的網(wǎng)上售價(jià)銷售,則每天的銷量相同,20天恰好可將荔枝售完,經(jīng)調(diào)查發(fā)現(xiàn),當(dāng)網(wǎng)上售價(jià)每上升0.1元/千克,每日銷量將減少5千克,將網(wǎng)上售價(jià)定為多少,才能使日銷量收入最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線m,n的夾角為35°,相交于點(diǎn)O,
(1)作出△ABC關(guān)于直線m的對(duì)稱△DEF;
(2)作出△DEF關(guān)于直線n的對(duì)稱△PQR;
(3)△PQR還可以由△ABC經(jīng)過(guò)一次怎樣的變換得到.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC與BD交于點(diǎn)O,延長(zhǎng)BC到E,使得CE=AD,連接DE.
(1)求證:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前,“校園手機(jī)”現(xiàn)象已經(jīng)受到社會(huì)廣泛關(guān)注,某數(shù)學(xué)興趣小組對(duì)“是否贊成中學(xué)生帶手機(jī)進(jìn)校園”的問題進(jìn)行了社會(huì)調(diào)查.小文將調(diào)查數(shù)據(jù)作出如下不完整的整理: 頻數(shù)分布表
看法 | 頻數(shù) | 頻率 |
贊成 | 5 | |
無(wú)所謂 | 0.1 | |
反對(duì) | 40 | 0.8 |
(1)請(qǐng)求出共調(diào)查了多少人;并把小文整理的圖表補(bǔ)充完整;
(2)小麗要將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計(jì)圖,則扇形圖中“贊成”的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在信宜市某“三華李”種植基地有A、B兩個(gè)品種的樹苗出售,已知A種比B種每株多2元,買1株A種樹苗和2株B種樹苗共需20元.
(1)問A、B兩種樹苗每株分別是多少元?
(2)為擴(kuò)大種植,某農(nóng)戶準(zhǔn)備購(gòu)買A、B兩種樹苗共360株,且A種樹苗數(shù)量不少于B種數(shù)量的一半,請(qǐng)求出費(fèi)用最省的購(gòu)買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△AOB中,直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,將△AOB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后,得到△A′O′B,且反比例函數(shù)y= 的圖象恰好經(jīng)過(guò)斜邊A′B的中點(diǎn)C,若SABO=4,tan∠BAO=2,則k= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:點(diǎn)A(x,y)為平面直角坐標(biāo)系內(nèi)的點(diǎn),若滿足x=y,則把點(diǎn)A 叫做“平衡點(diǎn)”.例如:M(1,1),N(﹣2,-2)都是“平衡點(diǎn)”.當(dāng)﹣1≤x≤3 時(shí),直線y=2x+m 上有“平衡點(diǎn)”,則m 的取值范圍是( )
A.0≤m≤1
B.﹣1≤m≤0
C.﹣3≤m≤3
D.﹣3≤m≤1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC位于第二象限,點(diǎn)A的坐標(biāo)是(﹣2,3),先把△ABC向右平移4個(gè)單位長(zhǎng)度得到△A1B1C1 , 再作與△A1B1C1關(guān)于x軸對(duì)稱的△A2B2C2 , 則點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)是( )
A.(﹣3,2)
B.(2,﹣3)
C.(1,﹣2)
D.(﹣1,2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com