【題目】如圖,在中,,的一條角平分線.、、分別在、、上,且四邊形是正方形.

1)求證:點的平分線上;

2)若,,且正方形的面積為4,求的面積.

【答案】1)證明見解析;(213.

【解析】

1)過點OOMAB,由正方形的性質(zhì)可得OE=OF,OEBC,OFAC,根據(jù)角平分線上的點到角兩邊距離相等可得OM=OG,所以OM=OF,于是根據(jù)角平分線的判定定理可得點O在∠BAC的平分線上;
2)由勾股定理得AB的長,根據(jù)正方形的面積可求OE的長,于是可得OM的長,根據(jù)三角形的面積計算公式可求.

解:(1)證明:過點OOMAB

∵四邊形OECF是正方形,
OE=OF,∠OEC=OFC =90°

OEBC,OFAC,
BD是∠ABC的一條角平分線,OMAB,
OE=OM
OF=OM,
∴點O在∠BAC的平分線上;

2)∵,,

∴在RtABC中,根據(jù)勾股定理,

∵正方形的面積為4

OM=OE=2,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,BAC=90°,對角線AC,BD相交于點P,以AB為直徑的O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.

(1)求證:EF是O的切線;

(2)求證:=4BPQP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0),下列結論:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤當x>﹣1時,y>0.其中正確結論的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD是正方形, GBC上(除端點外)的任意一點,DE⊥AG于點E,BF∥DE,交AG于點F.給出以下結論:①△AED≌△BFA;②DE﹣BF=EF;③△BGF∽△DAE;④DE﹣BG=FG.其中正確的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在四邊形中,,,動點從點出發(fā),沿,運動至點停止.設點運動的路程為,的面積為,如果關于的函數(shù)圖象如圖(2)所示,則的面積是(

A.6B.5C.4D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應點B1的坐標是(1,2),則點A1,C1的坐標分別是 ( 。

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)

C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高學生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆漢字聽寫大賽,學生經(jīng)選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學生成績?yōu)?/span>(分),且,將其按分數(shù)段分為五組,繪制出以下不完整表格:

組別

成績(分)

頻數(shù)(人數(shù))

頻率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

請根據(jù)表格提供的信息,解答以下問題:

(1)本次決賽共有 名學生參加;

(2)直接寫出表中a= ,b= ;

(3)請補全下面相應的頻數(shù)分布直方圖;

(4)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形ABCD中,AB=AD. ∠B+∠ADC=180°,點E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關系.

圖1 圖2 圖3

(1)思路梳理

將△ABE繞點A逆時針旋轉至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線. 易證△AFG ,故EF,BE,DF之間的數(shù)量關系為 ;

(2)類比引申

如圖2,在圖1的條件下,若點E,F(xiàn)由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關系,并給出證明.

(3)聯(lián)想拓展

如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°. 若BD=1,EC=2,則DE的長為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形延長AD到E,使DE=AD,連接EBEC,DB添加一個條件,不能使四邊形DBCE成為矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

同步練習冊答案