【題目】如圖,ABCD.

1)用直尺和圓規(guī)按要求作圖:作∠ACD的平分線CP,CPAB于點(diǎn)P;作AFCP,垂足為F.

2)判斷直線AF與線段CP的關(guān)系,并說(shuō)明理由.

【答案】1)見(jiàn)解析;(2)直線AF是線段CP的垂直平分線,理由見(jiàn)解析.

【解析】

1)根據(jù)尺規(guī)作圖(作角平分線和過(guò)一點(diǎn)作已知直線的垂線)的方法,按要求作圖即可;

2)根據(jù)角平分線的定義和平行線的性質(zhì)可得∠APC=∠ACP,進(jìn)而得到APAC,然后根據(jù)線段垂直平分線的判定可得結(jié)論.

解:(1CP,AF如圖所示:

2)直線AF是線段CP的垂直平分線,

理由:∵CP平分∠ACD,

∴∠ACP=∠PCD

ABCD,

∴∠APC=∠PCD

∴∠APC=∠ACP,

APAC,

又∵AFCP

∴直線AF是線段CP的垂直平分線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,分別以點(diǎn)A和點(diǎn)B為圓心,以相同的長(zhǎng)(大于AB)為半徑作弧,兩弧相交于點(diǎn)M和點(diǎn)N,作直線MNAB于點(diǎn)D,交BC于點(diǎn)E.若AC3,AB5,則DE等于(

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BEO的直徑,點(diǎn)A和點(diǎn)D是⊙O上的兩點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BE延長(zhǎng)線于點(diǎn).

(1)若∠ADE=25°,求∠C的度數(shù);

(2)若AB=AC,CE=2,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+cx軸于A、B兩點(diǎn),交y軸于點(diǎn)C(0,﹣),OA=1,OB=4,直線l過(guò)點(diǎn)A,交y軸于點(diǎn)D,交拋物線于點(diǎn)E,且滿足tanOAD=

(1)求拋物線的解析式;

(2)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿x軸正方形以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),沿射線AE以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)E運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)Q也停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

①在P、Q的運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使得ADCPQA相似,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

②在P、Q的運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使得APQCAQ的面積之和最大?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)A、OB依次在直線MN上,現(xiàn)將射線OA繞點(diǎn)O沿順時(shí)針?lè)较蛞悦棵?/span>4°的速度旋轉(zhuǎn),同時(shí)射線OB繞點(diǎn)O沿逆時(shí)針?lè)较蛞悦棵?/span>6°的速度旋轉(zhuǎn),直線MN保持不動(dòng),如圖2,設(shè)旋轉(zhuǎn)時(shí)間為t(0t60,單位:秒)

1)當(dāng)t=3時(shí),求∠AOB的度數(shù);

2)在運(yùn)動(dòng)過(guò)程中,當(dāng)∠AOB第二次達(dá)到72°時(shí),求t的值;

3)在旋轉(zhuǎn)過(guò)程中是否存在這樣的t,使得射線OB與射線OA垂直?如果存在,請(qǐng)求出t的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號(hào),一艘在港口正東方向的海警船接到求救信號(hào),測(cè)得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,

1)求點(diǎn)C到直線AB的距離;

2求海警船到達(dá)事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8,cos53°≈0.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,的內(nèi)部,點(diǎn)、分別在射線、上,且,,,分別交、于點(diǎn)、.

1)如圖①所示,若,,延長(zhǎng)至點(diǎn),使得,請(qǐng)證明EF=CE+DF;

2)如圖②所示,若∠AOB,.求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°,AB=13,AC=5BC=12,點(diǎn)O為∠ABCCAB平分線的交點(diǎn),則點(diǎn)O到邊AB的距離為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知CDAB于點(diǎn)D,BE AC于點(diǎn)E CD、 BE交于點(diǎn)O,且AO平分∠BAC,則圖中的全等三角形共有_________________對(duì)。

查看答案和解析>>

同步練習(xí)冊(cè)答案