如圖,如果AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于點(diǎn)F,那么BE和CD相等嗎?說明理由.

答案:
解析:

  

  思路分析:按常規(guī)說明BE與CD相等,可說明它們所在的三角形全等,即△BEF和△CDF,由條件可知,在△BEF和△CDF中,僅有對頂角相等及∠BEF=∠CDF=90°兩個(gè)條件,缺少一邊,故此路不通,這需另辟蹊徑.進(jìn)一步觀察圖形,若能說明AD=AE,則由AB=AC,可說明BE=CD.AD與AE分別在△ABD和△ACE中,由已知條件可說明這兩個(gè)三角形全等,此路暢通.

  課標(biāo)剖析:當(dāng)不能直接說明兩線段(或角)所在的三角形全等,從而得到線段(或角)相等時(shí),利用證相等線段(或角)的差或和所在的三角形全等來得到結(jié)論.是通常的思考方法之一.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,如果AB=AC,          ,即可判定ΔABD≌ΔACE。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,如果AB=AC,          ,即可判定ΔABD≌ΔACE。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年山東省教研片八年級上學(xué)期期中質(zhì)量檢查數(shù)學(xué)卷 題型:填空題

如圖,如果AB=AC,           ,即可判定ΔABD≌ΔACE。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A是△ABC和△ADE的公共頂點(diǎn),∠BAC+∠DAE=180°,ABk?AE,ACk?AD,點(diǎn)MDE的中點(diǎn),直線AM交直線BC于點(diǎn)N

⑴探究∠ANB與∠BAE的關(guān)系,并加以證明.

說明:如果你經(jīng)過反復(fù)探索沒解決問題,可以從下面①②中選取一個(gè)作為已知條件,再完成你的證明,選取①比選原題少得2分,選、诒冗x原題少得5分.

①     如圖18,k=1;②如圖19,ABAC

⑵若△ADE繞點(diǎn)A旋轉(zhuǎn),其他條件不變,則在旋轉(zhuǎn)的過程中⑴的結(jié)論是否發(fā)生變化?如果沒有發(fā)生變化,請寫出一個(gè)可以推廣的命題;如果有變化,請畫出變化后的一個(gè)圖形,并直接寫出變化后∠ANB與∠BAE的關(guān)系.

 


查看答案和解析>>

同步練習(xí)冊答案