如圖,D為△ABC內(nèi)一點(diǎn),CD平分∠ACB,BE⊥CD,垂足為D,交AC于點(diǎn)E,∠A=∠ABE.若AC=5,BC=3,則BD的長(zhǎng)為


  1. A.
    2.5
  2. B.
    1.5
  3. C.
    2
  4. D.
    1
D
分析:由已知條件判定△BEC的等腰三角形,且BC=CE;由等角對(duì)等邊判定AE=BE,則易求BD=BE=AE=(AC-BC).
解答:如圖,∵CD平分∠ACB,BE⊥CD,
∴BC=CE.
又∵∠A=∠ABE,
∴AE=BE.
∴BD=BE=AE=(AC-BC).
∵AC=5,BC=3,
∴BD=(5-3)=1.
故選D.
點(diǎn)評(píng):本題考查了等腰三角形的判定與性質(zhì).注意等腰三角形“三合一”性質(zhì)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、已知:如圖,D為△ABC內(nèi)一點(diǎn),AC=BC,CD平分∠ACB.
求證:∠ABD=∠BAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,D為△ABC內(nèi)一點(diǎn),E為△ABC外一點(diǎn),且∠1=∠2,∠3=∠4.
證明:△ABC∽△DBE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,D為△ABC內(nèi)一點(diǎn)連接BD、AD,以BC為邊在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,BE、
CE交于E,連接DE.
(1)求證:
BC
AB
=
BE
BD
;
(2)求證:△DBE∽△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,D為△ABC內(nèi)的一點(diǎn),E為△ABC外的一點(diǎn),且∠1=∠2,∠3=∠4.
(1)求證:△ABD∽△CBE.
(2)求證:△ABC∽△DBE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,O為△ABC內(nèi)一點(diǎn),以O(shè)為位似中心,作△A′B′C′∽△ABC,且相似比為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案