【題目】已知:如圖,四邊形ABCD是邊長為1的正方形,對角線ACBD相交于點(diǎn)O.過點(diǎn)O作一直角∠MON,直角邊OM、ON分別與OAOB重合,然后逆時(shí)針旋轉(zhuǎn)∠MON,旋轉(zhuǎn)角為θθ90°),OMON分別交AB、BCEF兩點(diǎn),連接EFOB于點(diǎn)G,則下列結(jié)論中正確的是________(填序號)

;②S四邊形OEBFS正方形ABCD=12;③;④OGBD=AE2+CF2;⑤在旋轉(zhuǎn)過程中,當(dāng)BEFCOF的面積之和最大時(shí),

【答案】①③④

【解析】

①②③證明△BOE≌△COF,結(jié)合正方形的性質(zhì)可判斷;④證明,結(jié)合△BOE≌△COF的性質(zhì)即可證得;⑤作OHBC,表示出SBEF+SCOF,即可判斷.

①∵四邊形ABCD是正方形,

OB=OC,OBE=OCF=45°,BOC=90°,

∴∠BOF+COF=90°,

∵∠EOF=90°,

∴∠BOF+COE=90°,

∴∠BOE=COF,

BOECOF中,

,

∴△BOE≌△COF(ASA),

OE=OF,BE=CF,

EF=OE;故①正確;

②∵S四邊形OEBF=SBOE+SBOE=SBOE+SCOF=SBOC=S正方形ABCD,

S四邊形OEBF:S正方形ABCD=1:4;故②錯(cuò)誤;

③∴BE+BF=BF+CF=BC=OA;故③正確;

④∵

∵在中,

,故④正確;

⑤過點(diǎn)OOHBC,

BC=1,

OH=BC=,

設(shè)AE=,則BE=CF=1-,BF=

SBEF+SCOF=BEBF+CFOH=(1-)+(1-)×=--2+

<0,

∴當(dāng)=時(shí),SBEF+SCOF最大;

即在旋轉(zhuǎn)過程中,當(dāng)BEFCOF的面積之和最大時(shí),AE=;故⑤錯(cuò)誤;

故答案為①③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB8,BC12,EAD中點(diǎn),FAB上一點(diǎn),將△AEF沿EF折疊后,點(diǎn)A恰好落到CF上的點(diǎn)G處,則折痕EF的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人類的血型一般可分為A,B,AB,O型四種,寧波市中心血戰(zhàn)2015年共有8萬人無償獻(xiàn)血,血戰(zhàn)統(tǒng)計(jì)人員由電腦隨機(jī)選出20人,血型分別是:

O,A,O,B,O,A,A,AB,A,O,O,B,AB,B,O,A,O,B,O,A.

(1)請?jiān)O(shè)計(jì)統(tǒng)計(jì)表分類統(tǒng)計(jì)這20人各類血型人數(shù);

(2)若每位獻(xiàn)血者平均獻(xiàn)血200毫升,一年中寧波市各醫(yī)院O型血用血量約為6×106毫米,請你估計(jì)2015年這8萬人所獻(xiàn)的O型血是否夠用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形紙片 ABCDADBC,將長方形紙片折疊, 使點(diǎn) D 與點(diǎn) B 重合,點(diǎn) C 落在點(diǎn) C'處,折痕為 EF

(1)求證:BE=BF

(2)ABE=18°,求BFE 的度數(shù).

(3) AB=4,AD=8,求 AE 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=∠B30°,過點(diǎn)CCDAC,交AB于點(diǎn)D

1)作⊙O,使⊙O經(jīng)過A、CD三點(diǎn)(尺規(guī)作圖,保留作圖痕跡,不寫作法);

2)判斷直線 BC與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)了相似三角形的知識后,愛探究的小明下晚自習(xí)后利用路燈的光線去測量了一路燈的高度,并作出了示意圖:如圖,路燈(點(diǎn)P)距地面若干米,身高1.6米的小明站在距路燈的底部(O點(diǎn))20米的A點(diǎn)時(shí),身影的長度AM5米;

1)請幫助小明求出路燈距地面的高度;

2)若另一名身高為1.5米小龍站在直線OA上的C點(diǎn)時(shí),測得他與小明的距離AC7米,求小龍的身影的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BABC,以AB為直徑作O,交AC于點(diǎn)D,連接DB,過點(diǎn)DDEBC,垂足為E

(1)求證:ADCD

(2)求證:DEO的切線.

(3)若∠C=60°,DE,求O半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在反比例函數(shù)上,軸于點(diǎn),點(diǎn)軸正半軸上,,、的長是方程的兩個(gè)實(shí)數(shù)根,且,點(diǎn)是線段延長線上的一個(gè)動(dòng)點(diǎn),的外接圓軸的另一個(gè)交點(diǎn)是

(1)求點(diǎn)和點(diǎn)的坐標(biāo);

(2)求反比例函數(shù)的解析式;

(3)連接的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對角線AC于點(diǎn)E,F,連接BE,DF

1)求證:AE=CF;

2)若BE=DE,求證:四邊形EBFD為菱形.

查看答案和解析>>

同步練習(xí)冊答案