圖1是某學(xué)校存放學(xué)生自行車的車棚的示意圖(尺寸如圖所示),車棚頂部是圓柱側(cè)面的一部分,其展開圖是矩形.圖2是車棚頂部截面的示意圖,所在圓的圓心為O.車棚頂部是用一種帆布覆蓋的,求覆蓋棚頂?shù)姆嫉拿娣e.(不考慮接縫等因素,計(jì)算結(jié)果保留π)

【答案】分析:根據(jù)題意,由圓的基本性質(zhì),可通過(guò)作輔助線建立模形,利用垂徑定理解答,也可用相交弦定理來(lái)解.
解答:解:連接OB,過(guò)點(diǎn)O作OE⊥AB,垂足為E,交于F,如圖,
由垂徑定理,可知:E是AB中點(diǎn),F(xiàn)是中點(diǎn),
∴EF是弓形高,
∴AE=AB=2,EF=2,
設(shè)半徑為R米,則OE=(R-2)米,
在Rt△AOE中,由勾股定理,得R2=(R-2)2+(22,
解得R=4,
∵sin∠AOE=,
∴∠AOE=60°,
∴∠AOB=120度.
的長(zhǎng)為=π(m),
∴帆布的面積為π×60=160π(平方米).
點(diǎn)評(píng):本題考查用方程解幾何問(wèn)題,方程是解決幾何有關(guān)計(jì)算問(wèn)題的有效的方法和工具,通常結(jié)合勾股定理的形式出現(xiàn).
部分學(xué)生遇此問(wèn)題,不能將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題.突破方法:聯(lián)系實(shí)際,將車棚頂部展開得長(zhǎng)方形,其長(zhǎng)為車棚長(zhǎng),寬為弧AB長(zhǎng).解題關(guān)鍵:在利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題時(shí),要善于把實(shí)際問(wèn)題與數(shù)學(xué)中的理論知識(shí)聯(lián)系起來(lái),能將生活中的問(wèn)題抽象為數(shù)學(xué)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

圖1是某學(xué)校存放學(xué)生自行車的車棚的示意圖(尺寸如圖所示),車棚頂部是圓柱側(cè)面的一部分,其展開圖是矩形.圖2是車棚頂部截面的示意圖,
AB
所在圓的圓心為O.車棚頂部是用一種帆布覆蓋的,求覆蓋棚頂?shù)姆嫉拿娣e.(不考慮接縫等因素,計(jì)算結(jié)果保留π)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1是某學(xué)校存放學(xué)生自行車的車棚的示意圖(尺寸如圖所示),車棚頂部是圓柱側(cè)面的一部分;圖2是車棚頂部截面的示意圖.
(1)用尺規(guī)在圖2中作出弧AB所在圓的圓心(保留作圖痕跡,不寫作法與證明);
(2)車棚頂部是用一種帆布覆蓋的,由圖1中給出數(shù)據(jù)求覆蓋棚頂?shù)姆嫉拿娣e(不考慮接縫等因素,計(jì)算結(jié)果保留π).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省無(wú)錫市新區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

圖1是某學(xué)校存放學(xué)生自行車的車棚的示意圖(尺寸如圖所示),車棚頂部是圓柱側(cè)面的—部分,其展開圖是矩形.圖2是車棚頂部截面的示意圖,AB所在圓的圓心為點(diǎn)O.

(1)求AB所在⊙O的半徑OA的長(zhǎng);
(2)車棚頂部是用一種帆布覆蓋的,求覆蓋棚頂?shù)姆嫉拿娣e(不考慮接縫等因素,計(jì)算結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第3章《圓》中考題集(08):3.2 圓的對(duì)稱性(解析版) 題型:解答題

圖1是某學(xué)校存放學(xué)生自行車的車棚的示意圖(尺寸如圖所示),車棚頂部是圓柱側(cè)面的一部分,其展開圖是矩形.圖2是車棚頂部截面的示意圖,所在圓的圓心為O.車棚頂部是用一種帆布覆蓋的,求覆蓋棚頂?shù)姆嫉拿娣e.(不考慮接縫等因素,計(jì)算結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊(cè)答案