【題目】在平面直角坐標系中,對于點A和圖形M,若圖形M上存在兩點P,Q,使得,則稱點A是圖形M倍增點

1)若圖形M為線段,其中點,點,則下列三個點,,是線段的倍增點的是_____________

2)若的半徑為4,直線l,求直線l倍增點的橫坐標的取值范圍;

3)設(shè)直線與兩坐標軸分別交于G,H,OT的半徑為4,圓心Tx軸上的動點,若線段GH上存在的倍增點,直接寫出圓心T的橫坐標的取值范圍.

【答案】1;(2;(3.

【解析】

1)首先要理解點A是圖形M的“倍增點”的定義,將三個點逐一代入驗證即可;

2)分兩種情況:①點"倍增點”在的外部,分別求得“倍增點橫坐標的最大值和最小值,②點"倍增點"的內(nèi)部,依次求得“倍增點"橫坐標的最大值和最小值,即可確定“倍增點”橫坐標的范圍;

3)分別求得線段GH兩端點為"倍增點”時橫坐標的最大值和最小值即可.

1到線段BC的距離為2,

不是線段的倍增點;

到線段BC的距離為1,

,

在線段BC上必存在一點P使EP=3,是線段的倍增點;

到線段BC的距離為2,

不是線段的倍增點;

綜上,是線段的倍增點;

2)設(shè)直線l倍增點的橫坐標為,

當(dāng)點在外時,

解方程,

當(dāng)點在內(nèi)部時,

解得:m≥0m≤-2

直線l上“倍增點”的橫坐標的取值范圍為

3)如圖所示,

當(dāng)點G(1,0)"倍增點"時,

T(9,0),此時T的橫坐標為最大值,

當(dāng)點H(0,1) “倍增點”時,

T(,0),此時T的橫坐標為最小值;

圓心T(t, 0)的橫坐標的取值范圍為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC(與點B,C不重合),四邊形ADEF為正方形,過點FFGCA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②SFABS四邊形CBFG=12;③∠ABC=ABF;④AD2=FQ·AC.其中所有正確結(jié)論的序號是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+mx+nx軸于點A﹣2,0)和點B,交y軸于點C0,2).

1)求拋物線的函數(shù)表達式;

2)若點M在拋物線上,且SAOM=2SBOC,求點M的坐標;

3)如圖2,設(shè)點N是線段AC上的一動點,作DNx軸,交拋物線于點D,求線段DN長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為,動點從點出發(fā)以的速度沿著邊運動,到達點停止運動,另一動點同時從點出發(fā),以的速度沿著邊向點運動,到達點停止運動,設(shè)點運動時間為,的面積為,則關(guān)于的函數(shù)圖象是()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的網(wǎng)格(每個小正方形的邊長為1)在平面直角坐標系中,其兩邊恰在坐標軸上,若反比例函數(shù))的圖象與一次函數(shù)的圖象恰好都經(jīng)過其中的兩個相同的網(wǎng)格點.

1)求k的值:

2)求一次函數(shù)的解析式;

3)設(shè)點,過點A的直線ly軸交于點B,若在)的圖象上存在點C,使得,結(jié)合圖象,直接寫出點B縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,CD是斜邊AB上的高,以CD為直徑作⊙O分別交ACBC于點E,F,過點E作⊙O的切線,分別交直線BCAB于點H,G

1)求證:HG=GB;

2)若⊙O的直徑為4,連接OG,交⊙O于點M.填空:

①連接OE,ME,DM.當(dāng)EG=____時,四邊形OEMD為菱形;

②連接OE.當(dāng)EG=_________時,四邊形OEAG為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一張三角形紙片,其三邊之比為.小方將紙片對折,第一次使頂點重合,第二次使頂點重合,第三次使頂點重合,三條折痕依次記為,,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC=10,D是邊BC上一動點(不與B,C重合),∠ADE=B=α,DEAC于點E,cosα= .下列結(jié)論:

①△ADE∽△ACD; ②當(dāng)BD=6時,△ABD與△DCE全等;

③△DCE為直角三角形時,BD為8; ④0<CE≤6.4.

其中正確的結(jié)論是____________.(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達式;

2)設(shè)商品每天的總利潤為W(元),求Wx之間的函數(shù)表達式(利潤=收入﹣成本);并求出售價為多少元時獲得最大利潤,最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案