精英家教網 > 初中數學 > 題目詳情
如圖所示,已知△ABC和△DCE均是等邊三角形,點B、C、E在同一條直線上,AE與CD交于點G,AC與BD交于點F,連接FG,則下列結論:①AE=BD;②AG=BF;③FG∥BE;④CF=CG.其中正確結論的個數( 。
分析:首先根據等邊三角形的性質,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD≌△ACE,根據全等三角形的對應邊相等即可證得①正確;又由全等三角形的對應角相等,得到∠CBD=∠CAE,根據ASA,證得△BCF≌△ACG,即可得到②正確,同理證得CF=CG,得到△CFG是等邊三角形,易得③④正確.
解答:解:∵△ABC和△DCE均是等邊三角形,
∴BC=AC,CD=CE,∠ACB=∠ECD=60°,
∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,
∴△BCD≌△ACE(SAS),
∴AE=BD,(①正確)
∠CBD=∠CAE,
∵∠BCA=∠ACG=60°,AC=BC,
∴△BCF≌△ACG(ASA),
∴AG=BF,(②正確)
同理:△DFC≌△EGC(ASA),
∴CF=CG,
∴△CFG是等邊三角形,
∴CF=CG
∴∠CFG=∠FCB=60°,
∴FG∥BE,(③④正確)
所以結論①②③④正確,
故選:D.
點評:此題考查了等邊三角形的判定與性質與全等三角形的判定與性質.此題圖形比較復雜,解題的關鍵是仔細識圖,合理應用數形結合思想.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.

查看答案和解析>>

科目:初中數學 來源: 題型:

5、如圖所示,已知AB∥CD,EF平分∠CEG,∠1=80°,則∠2的度數為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

23、如圖所示,已知AB∥CD,分別探索下列四個圖形中∠P與∠A,∠C的關系.要求:(1)、(2)直接寫出結論,(3)、(4)寫出結論并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知AB為圓O的直徑,AC為弦,OD∥BC交AC于D,OD=2cm,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知AB=AC,BD⊥AC,試說明∠BAC=2∠CBD.

查看答案和解析>>

同步練習冊答案