如圖,正方形ABCD的邊長為4,E、F分別是BC、CD上的兩個動點(diǎn),且AE⊥EF.則AF的最小值是____________.
5
設(shè)BE=x,則EC=4﹣x,先利用等角的余角相等得到∠BAE=∠FEC,則可判斷Rt△ABE∽Rt△ECF,利用相似比可表示出FC=,則DF=4﹣FC=4﹣=x2﹣x+4=(x﹣2)2+3,所以x=2時,DF有最小值3,而AF2=AD2+DF2,即DF最小時,AF最小,AF的最小值為=5.
解:設(shè)BE=x,則EC=4﹣x,
∵AE⊥EF,
∴∠AEF=90°,
∴∠AEB+∠FEC=90°,
而∠AEB+∠BAE=90°,
∴∠BAE=∠FEC,
∴Rt△ABE∽Rt△ECF,
=,即=,解得FC=,
∴DF=4﹣FC=4﹣=x2﹣x+4=(x﹣2)2+3
當(dāng)x=2時,DF有最小值3,
∵AF2=AD2+DF2
∴AF的最小值為=5.
故答案為:5.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

平面直角坐標(biāo)中,已知點(diǎn)O(0,0),A(0,2),B(1,0),點(diǎn)P是反比例函數(shù)y=﹣圖象上的一個動點(diǎn),過點(diǎn)P作PQ⊥x軸,垂足為Q.若以點(diǎn)O、P、Q為頂點(diǎn)的三角形與△OAB相似,則相應(yīng)的點(diǎn)P共有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,順次連接邊長為1的正方形ABCD四邊的中點(diǎn),得到四邊形A1B1C1D1,然后順次連接四邊形A1B1C1D1的中點(diǎn),得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點(diǎn),得到四邊形A3B3C3D3,…,按此方法得到的四邊形A8B8C8D8的周長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知,且相似比為,若邊上的中線,則邊上的中線=        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB∥DC,DE=2AE,CF=2BF,且DC=5,AB=8,則EF=      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在直角坐標(biāo)系中,已知點(diǎn)A(-2,0)、B(0,4)、C(0,3),過點(diǎn)C作直線交x軸于點(diǎn)D,使得以D、O、C為頂點(diǎn)的三角形與△AOB相似,這樣的直線最多可以作(   )
A.2條       B.3條           C.4條              D.6條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在6×8網(wǎng)格圖中,每個小正方形邊長均為1,點(diǎn)O和△ABC的頂點(diǎn)均與小正方形的頂點(diǎn)重合.

(1)以O(shè)為位似中心,在網(wǎng)格圖中作△A′B′C′和△ABC位似,且位似比為1∶2;
(2)連接(1)中的AA′,求四邊形AA′C′C的周長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

用放大鏡將圖形放大,應(yīng)該屬于(    )
A.平移變換;B.相似變換;C.對稱變換;D.旋轉(zhuǎn)變換.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則的值是( )
A.B.C.-D.-

查看答案和解析>>

同步練習(xí)冊答案