已知點(diǎn)A,B的坐標(biāo)分別是(2m+n,2),(1,n-m).若點(diǎn)A與點(diǎn)B關(guān)于y對(duì)稱,則m+2n的值為( 。
分析:根據(jù)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn)可知,縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù)解答.
解答:解:∵點(diǎn)A與點(diǎn)B關(guān)于y對(duì)稱,
2m+n=-1
n-m=2
,
解得
m=-1
n=1

∴m+2n=-1+2×1=1.
故選A.
點(diǎn)評(píng):本題考查了關(guān)于x軸、y軸對(duì)稱的點(diǎn)的坐標(biāo)特征,解決本題的關(guān)鍵是掌握好對(duì)稱點(diǎn)的坐標(biāo)規(guī)律:
(1)關(guān)于x軸對(duì)稱的點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);
(2)關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);
(3)關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)M,N的坐標(biāo)分別是M (0,-4),N(4,-4),點(diǎn)A是線段MN上一動(dòng)點(diǎn),以A為頂點(diǎn)的拋物線y=a(x-h)2+k和y軸交于點(diǎn)E,和直線x=4交于點(diǎn)F,和直線x=2交于點(diǎn)C,這精英家教網(wǎng)里a>0,且a為常數(shù).直線EF和拋物線的對(duì)稱軸交于點(diǎn)B,和直線x=2交于點(diǎn)D.
(1)寫(xiě)出k的值;
(2)求直線EF的函數(shù)表達(dá)式(表達(dá)式中可以含有a,h);
(3)比較線段BA和CD的長(zhǎng)短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A、B的坐標(biāo)分別是(0,0)(4,0),將△ABC繞A點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°后得到△A′B′C′
(1)畫(huà)出△A′B′C′(不要求寫(xiě)出作法)
(2)寫(xiě)出點(diǎn)C′的坐標(biāo).
(3)求旋轉(zhuǎn)過(guò)程中點(diǎn)B所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年湖北省宜昌市三中中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,已知點(diǎn)M,N的坐標(biāo)分別是M (0,-4),N(4,-4),點(diǎn)A是線段MN上一動(dòng)點(diǎn),以A為頂點(diǎn)的拋物線y=a(x-h)2+k和y軸交于點(diǎn)E,和直線x=4交于點(diǎn)F,和直線x=2交于點(diǎn)C,這里a>0,且a為常數(shù).直線EF和拋物線的對(duì)稱軸交于點(diǎn)B,和直線x=2交于點(diǎn)D.
(1)寫(xiě)出k的值;
(2)求直線EF的函數(shù)表達(dá)式(表達(dá)式中可以含有a,h);
(3)比較線段BA和CD的長(zhǎng)短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省廣州市荔灣區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知點(diǎn)A、B的坐標(biāo)分別是(0,0)(4,0),將△ABC繞A點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°后得到△A′B′C′
(1)畫(huà)出△A′B′C′(不要求寫(xiě)出作法)
(2)寫(xiě)出點(diǎn)C′的坐標(biāo).
(3)求旋轉(zhuǎn)過(guò)程中點(diǎn)B所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案