由2x-3y-4=0,可以得到用x表示y的式子y=
 
分析:要把方程2x-3y-4=0寫(xiě)成用含x的式子表示y的形式,需要把含有y的項(xiàng)移到等號(hào)一邊,其他的項(xiàng)移到另一邊,然后合并同類項(xiàng)、系數(shù)化1.
解答:解:移項(xiàng)得:-3y=4-2x,
系數(shù)化1得:y=-
1
3
(4-2x)=
2
3
x-
4
3
點(diǎn)評(píng):本題考查的是方程的基本運(yùn)算技能:移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1等,表示誰(shuí)就該把誰(shuí)放到等號(hào)的一邊,其他的項(xiàng)移到另一邊,然后合并同類項(xiàng)、系數(shù)化1即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,然后解答后面的問(wèn)題.
我們知道方程2x+3y=12有無(wú)數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得y=
12-2x
3
=4-
2
3
x
,(x、y為正整數(shù))∴
x>0
12-2x>0
則有0<x<6.又y=4-
2
3
x
為正整數(shù),則
2
3
x
為正整數(shù).
由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入y=4-
2
3
x=2

∴2x+3y=12的正整數(shù)解為
x=3
y=2

問(wèn)題:
(1)請(qǐng)你寫(xiě)出方程2x+y=5的一組正整數(shù)解:
 

(2)若
6
x-2
為自然數(shù),則滿足條件的x值有
 
個(gè);
A、2      B、3       C、4        D、5
(3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買(mǎi)了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問(wèn)有幾種購(gòu)買(mǎi)方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

由2x-3y=5,得到用x表示y的式子為y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,然后解答后面的問(wèn)題:
我們知道二元一次方程組
2x+3y=12
3x-3y=6
的求解方法是消元法,即可將它化為一元一次方程來(lái)解,可求得方程組
2x+3y=12
3x-3y=6
有唯一解.
我們也知道二元一次方程2x+3y=12的解有無(wú)數(shù)個(gè),而在實(shí)際問(wèn)題中我們往往只需要求出其正整數(shù)解.下面是求二元一次方程2x+3y=12的正整數(shù)解的過(guò)程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x
∵x、y為正整數(shù),∴
x>0
12-2x>0
則有0<x<6
又y=4-
2
3
x為正整數(shù),則
2
3
x為正整數(shù),所以x為3的倍數(shù).
又因?yàn)?<x<6,從而x=3,代入:y=4-
2
3
×3=2
∴2x+3y=12的正整數(shù)解為
x=3
y=2

解決問(wèn)題:
(1)九年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,花費(fèi)35元購(gòu)買(mǎi)了筆記本和鋼筆兩種獎(jiǎng)品,其中筆記本的單價(jià)為3元/本,鋼筆單價(jià)為5元/支,問(wèn)有幾種購(gòu)買(mǎi)方案?
(2)試求方程組
2x+y+z=10
3x+y-z=12
的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,然后解答后面的問(wèn)題:
我們知道二元一次方程組
2x+3y=12
3x-3y=6
的求解方法是消元法,即可將它化為一元一次方程來(lái)解,可求得方程組
2x+3y=12
3x-3y=6
有唯一解.
我們也知道二元一次方程2x+3y=12的解有無(wú)數(shù)個(gè),而在實(shí)際問(wèn)題中我們往往只需要求出其正整數(shù)解.
下面是求二元一次方程2x+3y=12的正整數(shù)解的過(guò)程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x

∵x、y為正整數(shù),∴
x>0
12-2x>0
則有0<x<6
又y=4-
2
3
x
為正整數(shù),則
2
3
x
為正整數(shù),所以x為3的倍數(shù)
又因?yàn)?<x<6,從而x=3,代入:y=4-
2
3
×3
=2
∴2x+3y=12的正整數(shù)解為
x=3
y=2

問(wèn)題:(1)若 
6
x-2
為正整數(shù),則滿足條件的x的值有幾個(gè).( 。
A、2    B、3    C、4   D、5
      (2)九年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,花費(fèi)35元購(gòu)買(mǎi)了筆記本和鋼筆兩種獎(jiǎng)品,其中筆記本的單價(jià)為3元/本,鋼筆單價(jià)為5元/支,問(wèn)有幾種購(gòu)買(mǎi)方案?
      (3)試求方程組
2x+y+z=10
3x+y-z=12
 的正整數(shù)解.

查看答案和解析>>

同步練習(xí)冊(cè)答案