如圖,在△PAB中,點C、D在邊AB上,PC=PD=CD,∠APB=120°.
(1)試說明△APC與△PBD相似.
(2)若CD=1,AC=x,BD=y(tǒng),請你求出y與x之間的函數(shù)關系式.
(3)小明猜想:若PC=PD=1,∠CPD=α,∠APB=β,只要α與β之間滿足某種關系式,問題(2)中的函數(shù)關系式仍然成立.你同意小明的觀點嗎?如果你同意,請求出α與β所滿足的關系式;若不同意,請說明理曲.
(1)說明見解析
(2)
(3)同意,2β-α=180°
解析試題分析:
(1)根據(jù)PC=PD=CD,得∠PCD=∠PDC=∠CPD=60°,則∠ACP=∠BDP=120°,可證明∠A=∠BPD,從而證得△APC與△PBD;
(2)由(1)得 ,則 ,從而得出y與x的函數(shù)關系式;
(3)根據(jù)題意仍可得出(2)中的函數(shù)關系式,則同意這種說法.
試題解析:(1)∵PC=PD=CD,
∴∠PCD=∠PDC=∠CPD=60°,
∴∠ACP=∠BDP=120°,
∵∠A+∠APC=60°,∠APC+∠BPD=∠APB-∠CPD=120°-60°=60°,
∴∠A=∠BPD
∴△APC∽△PBD
由(1)得△APC∽△PBD,,
∴,即
(3)同意,2β-α=180°
考點:相似三角形的判定與性質(zhì)
科目:初中數(shù)學 來源: 題型:填空題
如圖,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在線段AB上取一點D,作DF⊥AB交AC于點F.現(xiàn)將△ADF沿DF折疊,使點A落在線段DB上,對應點記為;AD的中點E的對應點記為.若∽,則AD=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
把一個三角形分割成幾個小正三角形,有兩種簡單的“基本分割法”.
基本分割法1:如圖①,把一個正三角形分割成4個小正三角形,即在原來1個正三角形的基礎上增加了3個正三角形.
基本分割法2:如圖②,把一個正三角形分割成6個小正三角形,即在原來1個正三角形的基礎上增加了5個正三角形.
請你運用上述兩種“基本分割法”,解決下列問題:
(1)把圖③的正三角形分割成9個小正三角形;
(2)把圖④的正三角形分割成10個小正三角形;
(3)把圖⑤的正三角形分割成11個小正三角形;
(4)把圖⑥的正三角形分割成12個小正三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在△ABC中,∠ABC=90°,以AB的中點O為圓心,OA為半徑的圓交AC于點D,E是BC的中點,連接DE,OE.
(1)判斷DE與⊙O的位置關系,并說明理由;
(2)求證:BC2=2CD•OE;
(3)若cos∠BAD=,BE=,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,直線=分別與軸,軸相交于兩點,點是軸的負半軸上的一個動點,以為圓心,3為半徑作.
(1)連結,若,試判斷與軸的位置關系,并說明理由;
(2)當為何值時,以與直線=的兩個交點和圓心為頂點的三角形是正三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知,如圖1,矩形ABCD中,AD=6,DC=8,矩形EFGH的三個頂點E、G、H分別在矩形ABCD的邊ABCD的邊AB、CD、DA上,AH=2,連接CF.
(1)如圖2,當四邊形EFGH為正方形時,求CF的長和△FCG的面積;
(2)如圖1,設AE=x,△FCG的面積=y,求y與x之間的函數(shù)關系式與y的最大值.
(3)當△CG是直角三角形時,求x和y值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com