【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),且AE∥CD,CE∥AB.
(1)證明:四邊形ADCE是菱形;
(2)若∠B=60°,BC=6,求菱形ADCE的高.(計(jì)算結(jié)果保留根號(hào))

【答案】
(1)證明:∵AE∥CD,CE∥AB,

∴四邊形ADCE是平行四邊形,

又∵∠ACB=90°,D是AB的中點(diǎn),

∴CD= AB=BD=AD,

∴平行四邊形ADCE是菱形


(2)解:過(guò)點(diǎn)D作DF⊥CE,垂足為點(diǎn)F,如圖所示:

DF即為菱形ADCE的高,

∵∠B=60°,CD=BD,

∴△BCD是等邊三角形,

∴∠BDC=∠BCD=60°,CD=BC=6,

∵CE∥AB,

∴∠DCE=∠BDC=60°,

又∵CD=BC=6,

∴在Rt△CDF中,DF=CDsin60°=6× =3


【解析】(1)先證明四邊形ADCE是平行四邊形,再證出一組鄰邊相等,即可得出結(jié)論;(2)過(guò)點(diǎn)D作DF⊥CE,垂足為點(diǎn)F;先證明△BCD是等邊三角形,得出∠BDC=∠BCD=60°,CD=BC=6,再由平行線的性質(zhì)得出∠DCE=∠BDC=60°,在Rt△CDF中,由三角函數(shù)求出DF即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)城公司為希望小學(xué)捐贈(zèng)甲、乙兩種品牌的體育器材,甲品牌有A、B、C三種型號(hào),乙品牌有D、E兩種型號(hào),現(xiàn)要從甲、乙兩種品牌的器材中各選購(gòu)一種型號(hào)進(jìn)行捐贈(zèng).
(1)寫出所有的選購(gòu)方案(用列表法或樹(shù)狀圖);
(2)如果在上述選購(gòu)方案中,每種方案被選中的可能性相同,那么A型器材被選中的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多邊形的每一個(gè)內(nèi)角都相等,并且每個(gè)外角都等于和它相鄰的內(nèi)角的一半.

(1)求這個(gè)多邊形是幾邊形;

(2)求這個(gè)多邊形的每一個(gè)內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你用學(xué)習(xí)一次函數(shù)時(shí)積累的經(jīng)驗(yàn)和方法解決下列問(wèn)題:

(1)在平面直角坐標(biāo)系中,畫出函數(shù)y=|x|的圖象

列表填空:

x

-3

-2

-1

0

1

2

3

y

描點(diǎn)、連線,在圖所示的平面直角坐標(biāo)系中畫出y=|x|的圖象;

(2)結(jié)合所畫函數(shù)圖象,寫出y=|x|的兩條不同類型的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進(jìn)行4×50米折返跑.在整個(gè)過(guò)程中,跑步者距起跑線的距離y(單位:m)與跑步時(shí)間t(單位:s)的對(duì)應(yīng)關(guān)系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過(guò)的路程大于小林前15s跑過(guò)的路程

D. 小林在跑最后100m的過(guò)程中,與小蘇相遇2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點(diǎn)的三角形與△ABC相似,則點(diǎn)E的坐標(biāo)不可能是(
A.(6,0)
B.(6,3)
C.(6,5)
D.(4,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從家到圖書館看報(bào),然后返回,他離家的距離y與離家的時(shí)間x之間的對(duì)應(yīng)關(guān)系如圖所示,如果小明在圖書館看報(bào)30分鐘,試求:

(1)小明回家的速度.

(2)小明離家50分鐘時(shí)離家的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣3,0)和B(1,0),與y軸交于點(diǎn)C,
(1)求拋物線的表達(dá)式;
(2)若點(diǎn)D為此拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),當(dāng)△DAC的面積最大時(shí),求點(diǎn)D的坐標(biāo);
(3)設(shè)拋物線頂點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)為M,記拋物線在第二象限之間的部分為圖象G.點(diǎn)N是拋物線對(duì)稱軸上一動(dòng)點(diǎn),如果直線MN與圖象G有公共點(diǎn),請(qǐng)結(jié)合函數(shù)的圖象,直接寫出點(diǎn)N縱坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2022年將在北京﹣﹣張家口舉辦冬季奧運(yùn)會(huì),北京將成為世界上第一個(gè)既舉辦夏季奧運(yùn)會(huì),又舉辦冬季奧運(yùn)會(huì)的城市,某校開(kāi)設(shè)了冰球選修課,12名同學(xué)被分成甲、乙兩組進(jìn)行訓(xùn)練,他們的身高(單位:cm)如表所示:

隊(duì)員1

隊(duì)員2

隊(duì)員3

隊(duì)員4

隊(duì)員5

隊(duì)員6

甲組

176

177

175

176

177

175

乙組

178

175

170

174

183

176

設(shè)兩隊(duì)隊(duì)員身高的平均數(shù)依次為 , , 方差依次為S2 , S2 , 下列關(guān)系中正確的是(
A. = , S2<S2
B. = 乙,S2S2
C. , S2<S2
D. , S2>S2

查看答案和解析>>

同步練習(xí)冊(cè)答案