【題目】某校綜合實踐活動小組的同學為了解七年級學生上學期參加綜合實踐活動的情況,隨機抽樣調查了學校部分七年級學生一個學期參加綜合實踐活動的情況,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.
根據(jù)統(tǒng)計圖中的信息解決問題:
(1)扇形統(tǒng)計圖中的a= ,并把條形統(tǒng)計圖補充完整;
(2)對于“綜合實踐活動為6天”的扇形,對應的圓心角為 度;
(3)如果全市七年級共有12000名學生,通過計算說明“綜合實踐活動不超過4天”的有多少名學生?
【答案】(1)30,見解析;(2)54;(3)13200名學生.
【解析】
(1) 先求得總人數(shù),再關鍵a所占百分百計算出a的值.
(2) 根據(jù)“綜合實踐活動為6天”的人數(shù)求得百分比,再乘360°即可得出答案.
(3) 先計算樣本的百分比,再根據(jù)百分比乘12000即可得出答案.
解:(1)20÷10%=200,
所以a%=×100%=30%,即a=30;
參加天數(shù)為5天的人數(shù)為200×25%=50(人),
參加天數(shù)為7天的人數(shù)為200×5%=10(人),
條形統(tǒng)計圖補充為:
(2)對于“綜合實踐活動為6天”的扇形,對應的圓心角的度數(shù)=360°×=54°;
故答案為200;54;
(3)12000×=13200,
所以估計綜合實踐活動不超過4天”的有13200名學生.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD與正方形A1B1C1D1關于某點中心對稱,已知A, D1,D三點的坐標分別是(0,4),(0,3),(0,2).
(1)對稱中心的坐標;
(2)寫出頂點B, C, B1 , C1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線與軸交于點,與軸交于點,與反比例函的圖象交于點,且.
(1)求點的坐標和反比例函數(shù)的解析式;
(2)點在軸上,反比例函數(shù)圖象上存在點,使得四邊形為平行四邊形,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】公元前5世紀,畢達哥拉斯學派中的一名成員希伯索斯發(fā)現(xiàn)了無理數(shù),導致了第一次數(shù)學危機.是無理數(shù)的證明如下:
假設是有理數(shù),那么它可以表示成(與是互質的兩個正整數(shù)).于是,所以,.于是是偶數(shù),進而是偶數(shù).從而可設,所以,,于是可得也是偶數(shù).這與“與是互質的兩個正整數(shù)”矛盾,從而可知“是有理數(shù)”的假設不成立,所以,是無理數(shù).這種證明“是無理數(shù)”的方法是( )
A.綜合法B.反證法C.舉反例法D.數(shù)學歸納法
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,∠A=∠B=70°.請按如下要求操作并解答:
(1)在圖中,過點A畫直線MP∥BC,過點C畫直線NP⊥AB,直線MP與NP交于點P,求∠APC的度數(shù);
(2)在(1)的前提下,直線PM上存在點D,且∠ABD=∠ADB,求直線BD與直線PN相交所形成的銳角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AC=BC,CE為△ABC的中線,BD為AC邊上的高,BF平分∠CBD交CE于點G,連接AG交BD于點M,若∠AFG=63°,則∠AMB的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,△ABC 的頂點均在格點上,請在所給直角坐標系中按要求畫圖和解答下列問題:
(1)以A點為旋轉中心,將△ABC繞點A順時針旋轉90°得△AB1C1,畫出△AB1C1.
(2)作出△ABC關于坐標原點O成中心對稱的△A2B2C2.
(3)作出點C關于x軸的對稱點P. 若點P向右平移x個單位長度后落在△A2B2C2的內部(不含落在△A2B2C2的邊上),請直接寫出x的取值范圍..
(提醒:每個小正方形邊長為1個單位長度)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com