(1)如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①當(dāng)點(diǎn)D在AC上時(shí),如圖1,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?直接寫出你猜想的結(jié)論;
②將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),如圖2,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請(qǐng)說(shuō)明理由.
(2)當(dāng)△ABC和△ADE滿足下面甲、乙、丙中的哪個(gè)條件時(shí),使線段BD、CE在(1)中的位置關(guān)系仍然成立?不必說(shuō)明理由.
甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;
乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;
丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.
(1)①結(jié)論:BD=CE,BD⊥CE②結(jié)論:BD=CE,BD⊥CE,理由見(jiàn)解析(2)乙
【解析】解:(1)①結(jié)論:BD=CE,BD⊥CE。
②結(jié)論:BD=CE,BD⊥CE。理由如下:
∵∠BAC=∠DAE=90°,∴∠BAD-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE。
在Rt△ABD與Rt△ACE中,∵AB=AC,∠BAD=∠CAE ,AD=AE,
∴△ABD≌△ACE(SAS)。∴BD=CE。
延長(zhǎng)BD交AC于F,交CE于H。
在△ABF與△HCF中,
∵∠ABF=∠HCF,∠AFB=∠HFC,
∴∠CHF=∠BAF=90°!郆D⊥CE。
(2)結(jié)論:乙.AB:AC=AD:AE,∠BAC=∠DAE=90°。
(1)①BD=CE,BD⊥CE。根據(jù)全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的對(duì)應(yīng)邊相等證得BD=CE、對(duì)應(yīng)角相等∠ABF=∠ECA;然后在△ABD和△CDF中,由三角形內(nèi)角和定理可以求得∠CFD=90°,即BD⊥CF。
②BD=CE,BD⊥CE。根據(jù)全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的對(duì)應(yīng)邊相等證得BD=CE、對(duì)應(yīng)角相等∠ABF=∠ECA;作輔助線(延長(zhǎng)BD交AC于F,交CE于H)BH構(gòu)建對(duì)頂角∠ABF=∠HCF,再根據(jù)三角形內(nèi)角和定理證得∠BHC=90°。
(2)根據(jù)結(jié)論①、②的證明過(guò)程知,∠BAC=∠DFC(或∠FHC=90°)時(shí),該結(jié)論成立了,所以本條件中的∠BAC=∠DAE≠90°不合適。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com