如圖,在等腰梯形ABCD中,AD∥BC,AE⊥BC于點(diǎn)E.DF⊥BC于點(diǎn)F.AD=2cm,BC=6cm,AE=4cm.點(diǎn)P、Q分別在線段AE、DF上,順次連接B、P、Q、C,線段BP、PQ、QC、CB所圍成的封閉圖形記為M,若點(diǎn)P在線段AE上運(yùn)動(dòng)時(shí),點(diǎn)Q也隨之精英家教網(wǎng)在線段DF上運(yùn)動(dòng),使圖形M的形狀發(fā)生改變,但面積始終為10cm2,設(shè)EP=xcm,F(xiàn)Q=ycm.解答下列問(wèn)題:
(1)直接寫(xiě)出當(dāng)x=3時(shí)y的值;
(2)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)當(dāng)x取何值時(shí),圖形M成為等腰梯形?圖形M成為三角形?
(4)直接寫(xiě)出線段PQ在運(yùn)動(dòng)過(guò)程中所能掃過(guò)的區(qū)域的面積.
分析:(1)由等腰梯形的性質(zhì)得:BE=EF=FC=2,在圖形中找到等量關(guān)系SM=S△BPE+S△QFC+S梯形QFEP,代入三角形面積公式、梯形面積公式以及已知條件解答即可;
(2)在圖形中找到等量關(guān)系SM=S△BPE+S△QFC+S梯形QFEP,代入三角形面積公式、梯形面積公式以及x、y的取值范圍解答即可;
(3)若圖形M為等腰梯形(如圖1),則EP=FQ,即x=-x+5,解得x=
5
2
;若圖形M為等腰三角形,分兩種情形:
①當(dāng)點(diǎn)P、Q、C在一條直線上時(shí)(如圖2),EP是△BPC的高;
②當(dāng)點(diǎn)B、P、Q在一條直線上時(shí)(如圖3),F(xiàn)Q是△BQC的高;
可根據(jù)M的值及底邊BC的長(zhǎng),分別求出兩種情況下的x的值.
(4)通過(guò)畫(huà)圖可發(fā)現(xiàn),線段PQ掃過(guò)的部分是兩個(gè)全等的三角形,且都是以x最小時(shí)AP的長(zhǎng)為底,
1
2
AD的長(zhǎng)為高,在(2)中已經(jīng)求得x的取值范圍為1≤x≤4,所以此時(shí)AP=AE-xmin=3,那么線段PQ掃過(guò)的面積即為:2S=2×
1
2
×3×1=3,由此得解.
解答:解:(1)由等腰梯形的性質(zhì)得:BE=EF=FC=2,
∴SM=S△BPE+S△QFC+S梯形QFEP
=
1
2
BE•x+
1
2
FC•y+
x+y
2
•EF
=
1
2
×2x+
1
2
×2y+
x+y
2
×2
=2(x+y),
把SM=10,x=3代入上式,解得y=2.

(2)由等腰梯形的性質(zhì)得:BE=EF=FC=2,
∵S△BEP+S梯形PEFQ+S△FCQ=S梯形M
1
2
×2x+
1
2
(x+y)×2+
1
2
×2y=10,
∴y=-x+5,
0≤x≤4
0≤-x+5≤4
,得1≤x≤4.

(3)若圖形M為等腰梯形(如圖1),則EP=FQ,即x=-x+5,解得x=
5
2

∴當(dāng)x=
5
2
時(shí),圖形M為等腰梯形.
若圖形M為三角形,分兩種情形:
①當(dāng)點(diǎn)P、Q、C在一條直線上時(shí)(如圖2),EP是△BPC的高,
1
2
BC•EP=10,即
1
2
×6x=10,解得x=
10
3
;
②當(dāng)點(diǎn)B、P、Q在一條直線上時(shí)(如圖3),F(xiàn)Q是△BQC的高,
1
2
BC•FQ=10,即
1
2
×6×(-x+5)=10,解得x=
5
3
;
∴當(dāng)x=
10
3
5
3
時(shí),圖形M為三角形.

(4)線段PQ掃過(guò)的部分是兩個(gè)全等的三角形,且都是以x最小時(shí)AP的長(zhǎng)為底,
1
2
AD的長(zhǎng)為高,在(2)中已經(jīng)求得x的取值范圍為1≤x≤4,所以此時(shí)AP=AE-xmin=3,那么線段PQ掃過(guò)的面積即為:2S=2×
1
2
×3×1=3cm2;
評(píng)分說(shuō)明:(4)中不寫(xiě)單位不扣分,線段PQ在運(yùn)動(dòng)過(guò)程中所能掃過(guò)的區(qū)域?yàn)閳D4中陰影部分精英家教網(wǎng)
點(diǎn)評(píng):本題主要考查了等腰梯形的性質(zhì)、三角形的面積公式以及梯形的面積公式;在解決動(dòng)點(diǎn)類(lèi)問(wèn)題時(shí),一定要注意分類(lèi)討論,以免漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿CD、DA向終點(diǎn)A運(yùn)動(dòng)(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止).設(shè)P、Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個(gè)直角梯形時(shí),求t的值;
(2)試問(wèn)是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點(diǎn),求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點(diǎn)E,且EC=3,則梯形ABCD的周長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中考必備’04全國(guó)中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動(dòng),點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動(dòng),且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時(shí),S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時(shí),x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點(diǎn),那么OE與OF的長(zhǎng)度有什么關(guān)系?借助備用圖說(shuō)明理由;并進(jìn)一步探究:對(duì)任何一個(gè)梯形,當(dāng)一直線l經(jīng)過(guò)梯形中位線的中點(diǎn)并滿(mǎn)足什么條件時(shí),一定能平分梯形的面積?(只要求說(shuō)出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案