精英家教網 > 初中數學 > 題目詳情
已知一條拋物線與x軸交于(3,0),(-1,0),且與拋物線y=-2x2開口方向和大小相同,求拋物線的解析式.
考點:待定系數法求二次函數解析式
專題:計算題
分析:由拋物線與x軸兩交點,設出y=a(x-3)(x+1),再由與拋物線y=-2x2開口方向和大小相同,確定出a的值,即可求出解析式.
解答:解:根據題意得:拋物線解析式為y=-2(x-3)(x+1)=-2x2+4x+6.
點評:此題考查了待定系數法求二次函數解析式,熟練掌握待定系數法是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知A(0,2),B(2,0),C在y=x2的圖象上,S△ABC=2,則C點坐標為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,CD⊥AB,BE平分∠ABC交CD于F,EH⊥CD于H,則下列結論錯誤的選項的是(  )
A、AC2+BD2=BC2+AD2
B、CH=
1
3
CD
C、
BD+EH
BC
為定值
D、若F為BE中點,則AD=3BD

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,第(1)個圖有1個黑球;第(2)個圖為3個同樣大小球疊成的圖形,最下一層的2個球為黑色,其余為白色;第(3)個圖為6個同樣大小球疊成的圖形,最下一層的3個球為黑色,其余為白色;…;則第21個圖中白與黑球數的差是( 。
A、21B、210
C、189D、231

查看答案和解析>>

科目:初中數學 來源: 題型:

求證:對任何矩形A,總存在一個矩形B,使得矩形B與矩形A的周長和面積比等于同一個常數k(k≥1).

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,自△ABC的頂點A引兩條射線交BC于X,Y,使得∠BAX=∠CAY,求證:
BX•BY
CX•CY
=
AB2
AC2

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:
(1)在測點A處安置側傾器,測得此時M的仰角∠MCE=α.
(2)在測點A與物體MN之間的B處安置側傾器(A,B與N在同一條直線上),測得此時M的仰角∠MDE=β.
(3)兩處側傾器的高度AC=BD=a,以及測點A和測點B之間的水平距離AB=b.
問:根據測量數據,你能求出物體MN的高度嗎?說說你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

某校兩名教師欲領若干名學生去旅游,兩家公司的價格一樣,優(yōu)惠條件如下:甲公司:1名教師全額免費,其余人按九五折收費;乙公司:全部按八折收費.當學生人數超過多少時,乙公司比甲公司更優(yōu)惠?

查看答案和解析>>

科目:初中數學 來源: 題型:

將編號為1,2,3,4,5的五個小球放入編號為1,2,3,4,5的五個盒子中,每個盒子只放入一個球,若只有為5的球正好放在了5號盒子中,其余的球都不放在與之對應的盒子中,求共有多少種不同的放法?

查看答案和解析>>

同步練習冊答案