對于一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0).當(dāng)k>0時(shí),y隨x的增大而______;當(dāng)______時(shí),y隨x的增大而減。
對于一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0).當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減。
故答案為:增大;k<0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將邊長為4的正方形置于平面直角坐標(biāo)系第一象限,使AB邊落在x軸正半軸上,且A點(diǎn)的坐標(biāo)是(1,0).
(1)直線經(jīng)過點(diǎn)C,且與x軸交于點(diǎn)E,求四邊形AECD的面積;
(2)若直線l經(jīng)過點(diǎn)E,且將正方形ABCD分成面積相等的兩部分,求直線l的解析式;
(3)若直線l1經(jīng)過點(diǎn)F()且與直線y=3x平行.將(2)中直線l沿著y軸向上平移1個(gè)單位,交x軸于點(diǎn)M,交直線l1于點(diǎn)N,求△NMF的面積.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動,同時(shí)動點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動.點(diǎn)P、Q的運(yùn)動速度均為1個(gè)單位,運(yùn)動時(shí)間為t秒.過點(diǎn)P作PE⊥AO交AB于點(diǎn)E.
(1)求直線AB的解析式;
(2)設(shè)△PEQ的面積為S,求S與t時(shí)間的函數(shù)關(guān)系,并指出自變量t的取值范圍;
(3)在動點(diǎn)P、Q運(yùn)動的過程中,點(diǎn)H是矩形AOBC內(nèi)(包括邊界)一點(diǎn),且以B、Q、E、H為頂點(diǎn)的四邊形是菱形,直接寫出t值和與其對應(yīng)的點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,其圖象反映的過程是:張強(qiáng)從家去體育場,在那里鍛煉了一陣后又走到文具店去買筆,然后散步走回家,其中x表示時(shí)間,y表示張強(qiáng)離家的距離.根據(jù)圖象,下列回答正確的是( 。
A.張強(qiáng)在體育場鍛煉45分鐘
B.張強(qiáng)家距離體育場是4千米
C.張強(qiáng)從離家到回到家一共用了200分鐘
D.張強(qiáng)從家到體育場的平均速度是10千米/小時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

直線y=-x+
1
2
不經(jīng)過第______象限,y隨x的增大而______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖點(diǎn)P(x,三)是第一象限內(nèi)一個(gè)動點(diǎn),且在直線三=-2x+左5,直線與x軸交于點(diǎn)A.
(你)當(dāng)點(diǎn)P的橫坐標(biāo)為3時(shí),△APO的面積為多少?
(2)設(shè)△APO面積為S,用含x的解析式表示S,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是( 。
A.一次函數(shù)也是正比例函數(shù)
B.正比例函數(shù)也是一次函數(shù)
C.一個(gè)函數(shù)不是一次函數(shù)就是正比例函數(shù)
D.一個(gè)函數(shù)不是正比例函數(shù)就不是一次函數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一次函數(shù)y=kx﹣k(k<0)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線y1=kx+b過點(diǎn)A(0,2)且與直線y2=mx交于點(diǎn)P(-1,-m),則關(guān)于x的不等式組mx>kx+b>mx-2的解集為( )
A.x<-1B.-2<x<0C.-2<x<-1D.x<-2

查看答案和解析>>

同步練習(xí)冊答案