【題目】如圖,在△ABC中,AB=5,AC=13,AD是中線,且AD=6.
(1)延長AD到E,使DE=AD,連結CE.
①結合提示畫出圖形;
②結合圖形寫出你認為正確的兩條結論,并選其中一條加以證明;
(2)請直接寫出所求的線段BC的長度.
【答案】(1)①見解析;②△CDE≌△BDA,∠E=90°,理由見解析;(2)2
【解析】
(1)①根據(jù)題意,畫圖即可;
②利用SAS即可證出△CDE≌△BDA,再根據(jù)勾股定理的逆定理即可證出△ACE是直角三角形,∠E=90°;
(2)根據(jù)勾股定理即可求出CD的長,從而求出BC的長度.
(1)①如圖所示:
②△CDE≌△BDA,∠E=90°,理由如下:
∵AD是△ABC的中線,
∴CD=BD,
在△CDE和△BDA中,
,
∴△CDE≌△BDA(SAS);
∴CE=BA=5,
∵DE=AD=6,
∴AE=2AD=12,
∴CE2+AE2=52+122=132=AC2,
∴△ACE是直角三角形,∠E=90°;
(2)由(1)得:∠E=90°,
∴CD===,
∴BC=2CD=2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,.分別是線段,上的點,連接,使四邊形為正方形,若點是上的動點,連接,將矩形沿折疊使得點落在正方形的對角線所在的直線上,對應點為,則線段的長為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=x+5與x軸交于點A,直線y=﹣x+b與x軸交于點B(1,0),且這兩條直線交于點C.
(1)求直線BC的解析式和點C的坐標;
(2)直接寫出關于x的不等式x+5>﹣x+b的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC和△DEC都是等邊三角形,∠ACB=∠DCE=60°,B、C、E在同一直線上,連結BD和AE
(1)求證:AE=BD
(2)求∠AHB的度數(shù)
(3)求證:DF=GE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題解決)
(1)如圖①,在等邊△ABC中,點M是BC邊上的任意一點(不含端點B,C),連結AM,以AM為邊作等邊△AMN,連結CN.試判斷∠ABC與∠ACN的大小關系.并說明理由.
(類比探究)
(2)如圖②在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其他條件不變,(1)中結論還成立嗎?請說明理由.
(拓展延伸)
(3)若點M是CB延長線上的任意一點(不含端點B),請直接寫出∠ACN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象交x軸于點A(﹣2,0),交y軸于點B,與兩坐標軸所圍成的三角形的面積為8,則該函數(shù)的表達式為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:
甲:連接,作的垂直平分線分別交,,于,,,連接,,則四邊形是菱形.
乙:分別作,的平分線,,分別交,于,,連接,則四邊形是菱形.
根據(jù)兩人的作法可判斷( )
A. 甲正確,乙錯誤 B. 乙正確,甲錯誤
C. 甲、乙均正確 D. 甲、乙均錯誤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,.在邊上有個不同的點,,,¨¨¨¨,,過這個點分別作的內(nèi)接矩形,,¨¨¨¨,,設每個矩形的周長分別為,,¨¨¨¨,,則¨¨¨¨________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com